Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 5 and fixed z > For fixed z and a=14/5, b>=a > For fixed z and a=14/5, b=6





http://functions.wolfram.com/07.23.03.b2bq.01









  


  










Input Form





Hypergeometric2F1[14/5, 6, 19/5, z] == (1/156250) (7 ((5 (-4436 + 2464 z - 451 z^2 - 121 z^3 + 44 z^4))/ (-1 + z)^5 - (1/z^(14/5)) (11 (45 z^(4/5) + 20 z^(9/5) + 36 Log[1 - z^(1/5)] - 36 (-1)^(1/5) Log[1 + (-1)^(1/5) z^(1/5)] + 36 (-1)^(2/5) Log[1 - (-1)^(2/5) z^(1/5)] - 36 (-1)^(3/5) Log[1 + (-1)^(3/5) z^(1/5)] + 36 (-1)^(4/5) Log[1 - (-1)^(4/5) z^(1/5)]))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["14", "5"], ",", "6", ",", FractionBox["19", "5"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "156250"], RowBox[List["(", RowBox[List["7", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4436"]], "+", RowBox[List["2464", " ", "z"]], "-", RowBox[List["451", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["121", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["44", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "5"]], "-", RowBox[List[FractionBox["1", SuperscriptBox["z", RowBox[List["14", "/", "5"]]]], RowBox[List["(", RowBox[List["11", " ", RowBox[List["(", RowBox[List[RowBox[List["45", " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]]]], "+", RowBox[List["20", " ", SuperscriptBox["z", RowBox[List["9", "/", "5"]]]]], "+", RowBox[List["36", " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "-", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "-", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 14 </mn> <mn> 5 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 19 </mn> <mn> 5 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;14&quot;, &quot;5&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;19&quot;, &quot;5&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 156250 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 44 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 121 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 451 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2464 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 4436 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mn> 14 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 45 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 5 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 5 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 14 <sep /> 5 </cn> <cn type='integer'> 6 </cn> </list> <list> <cn type='rational'> 19 <sep /> 5 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 156250 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 121 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 451 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2464 </cn> <ci> z </ci> </apply> <cn type='integer'> -4436 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 14 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 45 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["14", "5"], ",", "6", ",", FractionBox["19", "5"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4436"]], "+", RowBox[List["2464", " ", "z"]], "-", RowBox[List["451", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["121", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["44", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "5"]], "-", FractionBox[RowBox[List["11", " ", RowBox[List["(", RowBox[List[RowBox[List["45", " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]]]], "+", RowBox[List["20", " ", SuperscriptBox["z", RowBox[List["9", "/", "5"]]]]], "+", RowBox[List["36", " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "-", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "-", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "+", RowBox[List["36", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]]]], ")"]]]], SuperscriptBox["z", RowBox[List["14", "/", "5"]]]]]], ")"]]]], "156250"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02