Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 5 and fixed z > For fixed z and a=4, b>=a > For fixed z and a=4, b=4





http://functions.wolfram.com/07.23.03.b3hj.01









  


  










Input Form





Hypergeometric2F1[4, 4, 1/5, z] == -((46875 + 1511463 z + 2652805 z^2 + 509825 z^3)/(46875 (-1 + z)^7)) - (1/(78125 (1 - z)^(39/5))) (798 Sqrt[2 (5 + Sqrt[5])] z^(4/5) (399 + 1995 z + 1425 z^2 + 125 z^3) ArcTan[1 - ((1 - Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)), -((Sqrt[5/8 + Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))]) - (1/(78125 (1 - z)^(39/5))) (798 Sqrt[10 - 2 Sqrt[5]] z^(4/5) (399 + 1995 z + 1425 z^2 + 125 z^3) ArcTan[1 - ((1 + Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)), -((Sqrt[5/8 - Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))]) + (1596 z^(4/5) (399 + 1995 z + 1425 z^2 + 125 z^3) Log[1 + z^(1/5)/(1 - z)^(1/5)])/(78125 (1 - z)^(39/5)) + (399 (-1 + Sqrt[5]) z^(4/5) (399 + 1995 z + 1425 z^2 + 125 z^3) Log[1 - ((1 - Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) + z^(2/5)/(1 - z)^(2/5)])/(78125 (1 - z)^(39/5)) - (399 (1 + Sqrt[5]) z^(4/5) (399 + 1995 z + 1425 z^2 + 125 z^3) Log[1 - ((1 + Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) + z^(2/5)/(1 - z)^(2/5)])/(78125 (1 - z)^(39/5))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "4", ",", FractionBox["1", "5"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["46875", "+", RowBox[List["1511463", " ", "z"]], "+", RowBox[List["2652805", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["509825", " ", SuperscriptBox["z", "3"]]]]], RowBox[List["46875", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "7"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], RowBox[List["(", RowBox[List["798", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], RowBox[List["(", RowBox[List["798", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["1596", " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], "+", FractionBox[RowBox[List["399", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], "-", FractionBox[RowBox[List["399", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 5 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;4&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;5&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mn> 509825 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2652805 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1511463 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 46875 </mn> </mrow> <mrow> <mn> 46875 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 7 </mn> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 798 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 125 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1425 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1995 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 399 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <msqrt> <mn> 5 </mn> </msqrt> <mn> 8 </mn> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 78125 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 798 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 10 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 125 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1425 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1995 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 399 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mn> 5 </mn> </msqrt> <mn> 8 </mn> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 78125 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 1596 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 125 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1425 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1995 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 399 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 78125 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 399 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 125 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1425 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1995 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 399 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 78125 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 399 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 125 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1425 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1995 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 399 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 78125 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 4 </cn> <cn type='integer'> 4 </cn> </list> <list> <cn type='rational'> 1 <sep /> 5 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 509825 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2652805 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1511463 </cn> <ci> z </ci> </apply> <cn type='integer'> 46875 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 46875 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 798 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1995 </cn> <ci> z </ci> </apply> <cn type='integer'> 399 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='rational'> 5 <sep /> 8 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 78125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 39 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 798 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 10 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1995 </cn> <ci> z </ci> </apply> <cn type='integer'> 399 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='rational'> 5 <sep /> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 78125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 39 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1596 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1995 </cn> <ci> z </ci> </apply> <cn type='integer'> 399 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 78125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 39 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 399 </cn> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1995 </cn> <ci> z </ci> </apply> <cn type='integer'> 399 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 78125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 39 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 399 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1995 </cn> <ci> z </ci> </apply> <cn type='integer'> 399 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 78125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 39 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "4", ",", FractionBox["1", "5"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["46875", "+", RowBox[List["1511463", " ", "z"]], "+", RowBox[List["2652805", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["509825", " ", SuperscriptBox["z", "3"]]]]], RowBox[List["46875", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "7"]]]]]], "-", FractionBox[RowBox[List["798", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], "-", FractionBox[RowBox[List["798", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], "+", FractionBox[RowBox[List["1596", " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], "+", FractionBox[RowBox[List["399", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]], "-", FractionBox[RowBox[List["399", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["4", "/", "5"]]], " ", RowBox[List["(", RowBox[List["399", "+", RowBox[List["1995", " ", "z"]], "+", RowBox[List["1425", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["125", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["78125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["39", "/", "5"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02