| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.b3o3.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[4, 6, -(29/5), z] == 
 -((1/(2152343750 (-1 + z)^15)) (2152343750 - 41191406250 z + 
     392060546875 z^2 - 2538251953125 z^3 + 13219541015625 z^4 - 
     66121740234375 z^5 + 468327275390625 z^6 + 2698864296657273 z^7 + 
     2194290843124815 z^8 + 383442960294775 z^9 + 4774914894750 z^10 - 
     82043211250 z^11)) - (1/(9765625 (1 - z)^(79/5))) 
   (379513134 Sqrt[2 (5 + Sqrt[5])] z^(34/5) (7007 + 13475 z + 6125 z^2 + 
     625 z^3) ArcTan[1 - ((1 - Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)), 
     -((Sqrt[5/8 + Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))]) - 
  (1/(9765625 (1 - z)^(79/5))) (379513134 Sqrt[10 - 2 Sqrt[5]] z^(34/5) 
    (7007 + 13475 z + 6125 z^2 + 625 z^3) 
    ArcTan[1 - ((1 + Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)), 
     -((Sqrt[5/8 - Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))]) + 
  (759026268 z^(34/5) (7007 + 13475 z + 6125 z^2 + 625 z^3) 
    Log[1 + z^(1/5)/(1 - z)^(1/5)])/(9765625 (1 - z)^(79/5)) + 
  (1/(9765625 (1 - z)^(79/5))) (189756567 (-1 + Sqrt[5]) z^(34/5) 
    (7007 + 13475 z + 6125 z^2 + 625 z^3) 
    Log[1 - ((1 - Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) + 
      z^(2/5)/(1 - z)^(2/5)]) - (1/(9765625 (1 - z)^(79/5))) 
   (189756567 (1 + Sqrt[5]) z^(34/5) (7007 + 13475 z + 6125 z^2 + 625 z^3) 
    Log[1 - ((1 + Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) + 
      z^(2/5)/(1 - z)^(2/5)]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "6", ",", RowBox[List["-", FractionBox["29", "5"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["2152343750", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "15"]]]], RowBox[List["(", RowBox[List["2152343750", "-", RowBox[List["41191406250", " ", "z"]], "+", RowBox[List["392060546875", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2538251953125", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13219541015625", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["66121740234375", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["468327275390625", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2698864296657273", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2194290843124815", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["383442960294775", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["4774914894750", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["82043211250", " ", SuperscriptBox["z", "11"]]]]], ")"]]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], RowBox[List["(", RowBox[List["379513134", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], RowBox[List["(", RowBox[List["379513134", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List["759026268", " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], RowBox[List["(", RowBox[List["189756567", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], RowBox[List["(", RowBox[List["189756567", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], ")"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 6 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 29 </mn>  <mn> 5 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["29", "5"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 9765625 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 79 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 379513134 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 5 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6125 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13475 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 7007 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 8 </mn>  </mfrac>  <mo> + </mo>  <mfrac>  <msqrt>  <mn> 5 </mn>  </msqrt>  <mn> 8 </mn>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 34 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 9765625 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 79 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 379513134 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 10 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6125 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13475 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 7007 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <msqrt>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 8 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <msqrt>  <mn> 5 </mn>  </msqrt>  <mn> 8 </mn>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 34 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 759026268 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6125 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13475 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 7007 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 34 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mrow>  <mn> 9765625 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 79 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 189756567 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6125 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13475 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 7007 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 34 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mrow>  <mn> 9765625 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 79 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 189756567 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6125 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13475 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 7007 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msqrt>  <mn> 5 </mn>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 5 </mn>  </mroot>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 5 </mn>  </mroot>  </mrow>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 34 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  <mrow>  <mn> 9765625 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 79 </mn>  <mo> / </mo>  <mn> 5 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2152343750 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 15 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 82043211250 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 11 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4774914894750 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 383442960294775 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2194290843124815 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2698864296657273 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 468327275390625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 66121740234375 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13219541015625 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2538251953125 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 392060546875 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 41191406250 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 2152343750 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 4 </cn>  <cn type='integer'> 6 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 29 <sep /> 5 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 9765625 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 79 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 379513134 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <cn type='integer'> 5 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6125 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13475 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 7007 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='rational'> 5 <sep /> 8 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 34 <sep /> 5 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 9765625 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 79 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 379513134 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 10 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6125 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13475 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 7007 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 4 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='rational'> 5 <sep /> 8 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 34 <sep /> 5 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 759026268 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6125 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13475 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 7007 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 34 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 9765625 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 79 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 189756567 </cn>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6125 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13475 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 7007 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 34 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 9765625 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 79 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 189756567 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6125 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13475 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 7007 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 2 <sep /> 5 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <cn type='integer'> 5 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 34 <sep /> 5 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 9765625 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 79 <sep /> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2152343750 </cn>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 15 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -82043211250 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 11 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4774914894750 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 383442960294775 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2194290843124815 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2698864296657273 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 468327275390625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 66121740234375 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13219541015625 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2538251953125 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 392060546875 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 41191406250 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2152343750 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["4", ",", "6", ",", RowBox[List["-", FractionBox["29", "5"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2152343750", "-", RowBox[List["41191406250", " ", "z"]], "+", RowBox[List["392060546875", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2538251953125", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["13219541015625", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["66121740234375", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["468327275390625", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2698864296657273", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2194290843124815", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["383442960294775", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["4774914894750", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["82043211250", " ", SuperscriptBox["z", "11"]]]]], RowBox[List["2152343750", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "15"]]]]]], "-", FractionBox[RowBox[List["379513134", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], "-", FractionBox[RowBox[List["379513134", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], "+", FractionBox[RowBox[List["759026268", " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], "+", FractionBox[RowBox[List["189756567", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]], "-", FractionBox[RowBox[List["189756567", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["7007", "+", RowBox[List["13475", " ", "z"]], "+", RowBox[List["6125", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["625", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["9765625", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["79", "/", "5"]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |