Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 5 and fixed z > For fixed z and a=21/5, b>=a > For fixed z and a=21/5, b=5





http://functions.wolfram.com/07.23.03.b3s1.01









  


  










Input Form





Hypergeometric2F1[21/5, 5, 26/5, -z] == (1/12500) (7 (-((5 (-332 + 94 z + 84 z^2 + 33 z^3))/(1 + z)^4) + (1/z^(21/5)) (-2640 z^(1/5) + 440 z^(6/5) - 240 z^(11/5) + 165 z^(16/5) + 528 Log[1 + z^(1/5)] + 528 (-1)^(4/5) Log[1 - (-1)^(1/5) z^(1/5)] - 528 (-1)^(3/5) Log[1 + (-1)^(2/5) z^(1/5)] + 528 (-1)^(2/5) Log[1 - (-1)^(3/5) z^(1/5)] - 528 (-1)^(1/5) Log[1 + (-1)^(4/5) z^(1/5)])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["21", "5"], ",", "5", ",", FractionBox["26", "5"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "12500"], RowBox[List["(", RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "332"]], "+", RowBox[List["94", " ", "z"]], "+", RowBox[List["84", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["33", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "4"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox["z", RowBox[List["21", "/", "5"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2640"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List["440", " ", SuperscriptBox["z", RowBox[List["6", "/", "5"]]]]], "-", RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["11", "/", "5"]]]]], "+", RowBox[List["165", " ", SuperscriptBox["z", RowBox[List["16", "/", "5"]]]]], "+", RowBox[List["528", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "+", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "-", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "+", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "-", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 21 </mn> <mn> 5 </mn> </mfrac> <mo> , </mo> <mn> 5 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 26 </mn> <mn> 5 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;21&quot;, &quot;5&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;5&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;26&quot;, &quot;5&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 12500 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 165 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 16 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 240 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 6 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2640 </mn> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <mn> 528 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 528 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 5 </mn> </mroot> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 528 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 528 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 528 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 5 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 4 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 5 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 33 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 84 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 94 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 332 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 21 <sep /> 5 </cn> <cn type='integer'> 5 </cn> </list> <list> <cn type='rational'> 26 <sep /> 5 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 12500 </cn> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 165 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 16 <sep /> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 440 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 6 <sep /> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2640 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 528 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 528 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 528 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 528 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 528 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 4 <sep /> 5 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 84 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 94 </cn> <ci> z </ci> </apply> <cn type='integer'> -332 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["21", "5"], ",", "5", ",", FractionBox["26", "5"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["7", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "332"]], "+", RowBox[List["94", " ", "z"]], "+", RowBox[List["84", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["33", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "4"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2640"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "+", RowBox[List["440", " ", SuperscriptBox["z", RowBox[List["6", "/", "5"]]]]], "-", RowBox[List["240", " ", SuperscriptBox["z", RowBox[List["11", "/", "5"]]]]], "+", RowBox[List["165", " ", SuperscriptBox["z", RowBox[List["16", "/", "5"]]]]], "+", RowBox[List["528", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "+", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "-", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "+", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["2", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]], "-", RowBox[List["528", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "5"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["4", "/", "5"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]], "]"]]]]]], SuperscriptBox["z", RowBox[List["21", "/", "5"]]]]]], ")"]]]], "12500"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02