|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.b4b3.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[5, 6, -(29/5), z] ==
(1/(21523437500 (-1 + z)^16)) (21523437500 - 455703125000 z +
4851123046875 z^2 - 35598046875000 z^3 + 213625781250000 z^4 -
1256397187500000 z^5 + 10716355781250000 z^6 + 83003350980449496 z^7 +
98452929567993480 z^8 + 31480696309232800 z^9 + 2345726493832625 z^10 +
8860666815000 z^11) - (1/(48828125 (1 - z)^(84/5)))
(189756567 Sqrt[2 (5 + Sqrt[5])] z^(34/5) (189189 + 485100 z +
330750 z^2 + 67500 z^3 + 3125 z^4)
ArcTan[1 - ((1 - Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)),
-((Sqrt[5/8 + Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))]) -
(1/(48828125 (1 - z)^(84/5))) (189756567 Sqrt[10 - 2 Sqrt[5]] z^(34/5)
(189189 + 485100 z + 330750 z^2 + 67500 z^3 + 3125 z^4)
ArcTan[1 - ((1 + Sqrt[5]) z^(1/5))/(4 (1 - z)^(1/5)),
-((Sqrt[5/8 - Sqrt[5]/8] z^(1/5))/(1 - z)^(1/5))]) +
(1/(48828125 (1 - z)^(84/5))) (379513134 z^(34/5)
(189189 + 485100 z + 330750 z^2 + 67500 z^3 + 3125 z^4)
Log[1 + z^(1/5)/(1 - z)^(1/5)]) + (1/(97656250 (1 - z)^(84/5)))
(189756567 (-1 + Sqrt[5]) z^(34/5) (189189 + 485100 z + 330750 z^2 +
67500 z^3 + 3125 z^4) Log[1 - ((1 - Sqrt[5]) z^(1/5))/
(2 (1 - z)^(1/5)) + z^(2/5)/(1 - z)^(2/5)]) -
(1/(97656250 (1 - z)^(84/5))) (189756567 (1 + Sqrt[5]) z^(34/5)
(189189 + 485100 z + 330750 z^2 + 67500 z^3 + 3125 z^4)
Log[1 - ((1 + Sqrt[5]) z^(1/5))/(2 (1 - z)^(1/5)) +
z^(2/5)/(1 - z)^(2/5)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["5", ",", "6", ",", RowBox[List["-", FractionBox["29", "5"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["21523437500", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "16"]]]], RowBox[List["(", RowBox[List["21523437500", "-", RowBox[List["455703125000", " ", "z"]], "+", RowBox[List["4851123046875", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["35598046875000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["213625781250000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1256397187500000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["10716355781250000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["83003350980449496", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["98452929567993480", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["31480696309232800", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["2345726493832625", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["8860666815000", " ", SuperscriptBox["z", "11"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["48828125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], RowBox[List["(", RowBox[List["189756567", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["48828125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], RowBox[List["(", RowBox[List["189756567", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["48828125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], RowBox[List["(", RowBox[List["379513134", " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["97656250", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], RowBox[List["(", RowBox[List["189756567", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["97656250", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], RowBox[List["(", RowBox[List["189756567", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 29 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["29", "5"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 48828125 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 84 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 189756567 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3125 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 67500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 330750 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 485100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 189189 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> <mo> + </mo> <mfrac> <msqrt> <mn> 5 </mn> </msqrt> <mn> 8 </mn> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 34 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 48828125 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 84 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 189756567 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 10 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3125 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 67500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 330750 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 485100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 189189 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mrow> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mn> 5 </mn> </msqrt> <mn> 8 </mn> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 34 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 379513134 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3125 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 67500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 330750 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 485100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 189189 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 34 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mrow> <mn> 48828125 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 84 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 97656250 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 84 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 189756567 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3125 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 67500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 330750 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 485100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 189189 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 34 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 97656250 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 84 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 189756567 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3125 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 67500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 330750 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 485100 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 189189 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 5 </mn> </mroot> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 34 </mn> <mo> / </mo> <mn> 5 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 21523437500 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 16 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8860666815000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2345726493832625 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 31480696309232800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 98452929567993480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 83003350980449496 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10716355781250000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1256397187500000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 213625781250000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 35598046875000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4851123046875 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 455703125000 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 21523437500 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 5 </cn> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 29 <sep /> 5 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 48828125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 84 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 189756567 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 67500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 330750 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 485100 </cn> <ci> z </ci> </apply> <cn type='integer'> 189189 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='rational'> 5 <sep /> 8 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 34 <sep /> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 48828125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 84 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 189756567 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 10 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 67500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 330750 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 485100 </cn> <ci> z </ci> </apply> <cn type='integer'> 189189 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='rational'> 5 <sep /> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 34 <sep /> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 379513134 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 67500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 330750 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 485100 </cn> <ci> z </ci> </apply> <cn type='integer'> 189189 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 34 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 48828125 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 84 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 97656250 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 84 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 189756567 </cn> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 67500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 330750 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 485100 </cn> <ci> z </ci> </apply> <cn type='integer'> 189189 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 34 <sep /> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 97656250 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 84 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 189756567 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 67500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 330750 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 485100 </cn> <ci> z </ci> </apply> <cn type='integer'> 189189 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 2 <sep /> 5 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 34 <sep /> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 21523437500 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 16 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8860666815000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2345726493832625 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 31480696309232800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 98452929567993480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 83003350980449496 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10716355781250000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1256397187500000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 213625781250000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 35598046875000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4851123046875 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 455703125000 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 21523437500 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["5", ",", "6", ",", RowBox[List["-", FractionBox["29", "5"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["21523437500", "-", RowBox[List["455703125000", " ", "z"]], "+", RowBox[List["4851123046875", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["35598046875000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["213625781250000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1256397187500000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["10716355781250000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["83003350980449496", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["98452929567993480", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["31480696309232800", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["2345726493832625", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["8860666815000", " ", SuperscriptBox["z", "11"]]]]], RowBox[List["21523437500", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "16"]]]], "-", FractionBox[RowBox[List["189756567", " ", SqrtBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "+", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["48828125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], "-", FractionBox[RowBox[List["189756567", " ", SqrtBox[RowBox[List["10", "-", RowBox[List["2", " ", SqrtBox["5"]]]]]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SqrtBox[RowBox[List[FractionBox["5", "8"], "-", FractionBox[SqrtBox["5"], "8"]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]]]], "]"]]]], RowBox[List["48828125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], "+", FractionBox[RowBox[List["379513134", " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "]"]]]], RowBox[List["48828125", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], "+", FractionBox[RowBox[List["189756567", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["97656250", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]], "-", FractionBox[RowBox[List["189756567", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["34", "/", "5"]]], " ", RowBox[List["(", RowBox[List["189189", "+", RowBox[List["485100", " ", "z"]], "+", RowBox[List["330750", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["67500", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["3125", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SqrtBox["5"]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "5"]]]]]], "+", FractionBox[SuperscriptBox["z", RowBox[List["2", "/", "5"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["2", "/", "5"]]]]]], "]"]]]], RowBox[List["97656250", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["84", "/", "5"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|