Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 6 and fixed z > For fixed z and a=1/6, b=1





http://functions.wolfram.com/07.23.03.0300.01









  


  










Input Form





Hypergeometric2F1[1/6, 1, 13/6, z] == 7/(6 z) - ((7 (1 - z))/(72 z^(7/6))) (2 Log[1 + z^(1/6)] - 2 Log[1 - z^(1/6)] - Log[1 - z^(1/6) + z^(1/3)] + Log[1 + z^(1/6) + z^(1/3)] + 2 Sqrt[3] ArcTan[1 - z^(1/3), Sqrt[3] z^(1/6)])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "6"], ",", "1", ",", FractionBox["13", "6"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["7", RowBox[List["6", "z"]]], "-", RowBox[List[FractionBox[RowBox[List["7", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]], RowBox[List["72", " ", SuperscriptBox["z", RowBox[List["7", "/", "6"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]], "-", RowBox[List["2", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "6"]]], "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "6"]]], "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], "+", RowBox[List["2", SqrtBox["3"], RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], ",", RowBox[List[SqrtBox["3"], SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 6 </mn> </mfrac> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 13 </mn> <mn> 6 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;6&quot;], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;13&quot;, &quot;6&quot;], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 7 </mn> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 7 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 72 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> </mrow> <mo> , </mo> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> <mo> - </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mi> z </mi> <mn> 3 </mn> </mroot> <mo> + </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mroot> <mi> z </mi> <mn> 6 </mn> </mroot> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 1 <sep /> 6 </cn> <cn type='integer'> 1 </cn> <cn type='rational'> 13 <sep /> 6 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 72 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 6 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ln /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "6"], ",", "1", ",", FractionBox["13", "6"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["7", RowBox[List["6", " ", "z"]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["7", " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]], "]"]]]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "6"]]], "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "6"]]], "+", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "]"]], "+", RowBox[List["2", " ", SqrtBox["3"], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], ",", RowBox[List[SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "6"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["72", " ", SuperscriptBox["z", RowBox[List["7", "/", "6"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29