|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.b53i.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(47/8), 5/8, 13/4, z] ==
(1/(66281215 z^3)) (4 2^(1/4) (1 + Sqrt[1 - z])^(3/4)
(134044 - 1440973 z + 12868224 z^2 - 11023246 z^3 + 10839688 z^4 -
7453197 z^5 + 3334596 z^6 - 872448 z^7 + 101376 z^8 +
(1/Sqrt[1 - z]) (-134044 + 1507995 z - 13571955 z^2 + 25570766 z^3 -
26777346 z^4 + 22811751 z^5 - 13698847 z^6 + 5435232 z^7 -
1278720 z^8 + 135168 z^9)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["47", "8"]]], ",", FractionBox["5", "8"], ",", FractionBox["13", "4"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["66281215", " ", SuperscriptBox["z", "3"]]]], RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["134044", "-", RowBox[List["1440973", " ", "z"]], "+", RowBox[List["12868224", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11023246", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["10839688", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7453197", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3334596", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["872448", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["101376", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "-", "z"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "134044"]], "+", RowBox[List["1507995", " ", "z"]], "-", RowBox[List["13571955", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["25570766", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["26777346", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["22811751", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13698847", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["5435232", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["1278720", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["135168", " ", SuperscriptBox["z", "9"]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 47 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 13 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["47", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["5", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["13", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 66281215 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 101376 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 872448 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3334596 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7453197 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10839688 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11023246 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12868224 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1440973 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 135168 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1278720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5435232 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13698847 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22811751 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 26777346 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25570766 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13571955 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1507995 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 134044 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 134044 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 47 <sep /> 8 </cn> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </list> <list> <cn type='rational'> 13 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 66281215 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 101376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 872448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3334596 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7453197 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 10839688 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11023246 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12868224 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1440973 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 135168 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1278720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5435232 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13698847 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 22811751 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 26777346 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 25570766 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13571955 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1507995 </cn> <ci> z </ci> </apply> <cn type='integer'> -134044 </cn> </apply> </apply> <cn type='integer'> 134044 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["47", "8"]]], ",", FractionBox["5", "8"], ",", FractionBox["13", "4"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["4", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["(", RowBox[List["134044", "-", RowBox[List["1440973", " ", "z"]], "+", RowBox[List["12868224", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11023246", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["10839688", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7453197", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3334596", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["872448", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["101376", " ", SuperscriptBox["z", "8"]]], "+", FractionBox[RowBox[List[RowBox[List["-", "134044"]], "+", RowBox[List["1507995", " ", "z"]], "-", RowBox[List["13571955", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["25570766", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["26777346", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["22811751", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13698847", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["5435232", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["1278720", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["135168", " ", SuperscriptBox["z", "9"]]]]], SqrtBox[RowBox[List["1", "-", "z"]]]]]], ")"]]]], RowBox[List["66281215", " ", SuperscriptBox["z", "3"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|