|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.b56k.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(47/8), 11/8, 4, z] ==
(2048 2^(1/4) (-2 Sqrt[1 - z] (4289408 - 28584883 z + 60990020 z^2 -
198104210 z^3 + 293526220 z^4 - 257970659 z^5 + 137219784 z^6 -
40999920 z^7 + 5304000 z^8) EllipticE[
2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])] -
Sqrt[2 - 2 Sqrt[1 - z]] Sqrt[1 - z] (4289408 - 28584883 z +
60990020 z^2 - 198104210 z^3 + 293526220 z^4 - 257970659 z^5 +
137219784 z^6 - 40999920 z^7 + 5304000 z^8)
EllipticE[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])] +
Sqrt[1 - z] (4289408 - 28584883 z + 60990020 z^2 - 198104210 z^3 +
293526220 z^4 - 257970659 z^5 + 137219784 z^6 - 40999920 z^7 +
5304000 z^8) EllipticK[2 - (2 Sqrt[2])/(Sqrt[2] +
Sqrt[1 - Sqrt[1 - z]])] + (4289408 - 31265763 z + 78415740 z^2 +
289815950 z^3 - 669043380 z^4 + 841543101 z^5 - 657447856 z^6 +
318240000 z^7 - 87834240 z^8 + 10608000 z^9)
EllipticK[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])]))/
(535873563225 Pi Sqrt[Sqrt[2] + Sqrt[1 - Sqrt[1 - z]]] z^3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["47", "8"]]], ",", FractionBox["11", "8"], ",", "4", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["2048", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["28584883", " ", "z"]], "+", RowBox[List["60990020", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["198104210", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["293526220", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["257970659", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["137219784", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["40999920", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["5304000", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["28584883", " ", "z"]], "+", RowBox[List["60990020", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["198104210", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["293526220", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["257970659", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["137219784", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["40999920", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["5304000", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["28584883", " ", "z"]], "+", RowBox[List["60990020", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["198104210", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["293526220", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["257970659", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["137219784", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["40999920", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["5304000", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["31265763", " ", "z"]], "+", RowBox[List["78415740", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["289815950", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["669043380", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["841543101", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["657447856", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["318240000", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["87834240", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10608000", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["535873563225", " ", "\[Pi]", " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]], " ", SuperscriptBox["z", "3"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 47 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 4 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["47", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> </msqrt> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5304000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40999920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 137219784 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 257970659 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 293526220 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 198104210 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60990020 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28584883 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4289408 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5304000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40999920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 137219784 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 257970659 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 293526220 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 198104210 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60990020 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28584883 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4289408 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5304000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 40999920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 137219784 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 257970659 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 293526220 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 198104210 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60990020 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 28584883 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4289408 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 10608000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 87834240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 318240000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 657447856 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 841543101 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 669043380 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 289815950 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 78415740 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 31265763 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4289408 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 535873563225 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 47 <sep /> 8 </cn> </apply> <cn type='rational'> 11 <sep /> 8 </cn> </list> <list> <cn type='integer'> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5304000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40999920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 137219784 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 257970659 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 293526220 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 198104210 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60990020 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28584883 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 4289408 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5304000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40999920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 137219784 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 257970659 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 293526220 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 198104210 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60990020 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28584883 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 4289408 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5304000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40999920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 137219784 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 257970659 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 293526220 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 198104210 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60990020 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 28584883 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 4289408 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 10608000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 87834240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 318240000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 657447856 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 841543101 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 669043380 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 289815950 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 78415740 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 31265763 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 4289408 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 535873563225 </cn> <pi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["47", "8"]]], ",", FractionBox["11", "8"], ",", "4", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2048", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["28584883", " ", "z"]], "+", RowBox[List["60990020", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["198104210", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["293526220", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["257970659", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["137219784", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["40999920", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["5304000", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["2", "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["28584883", " ", "z"]], "+", RowBox[List["60990020", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["198104210", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["293526220", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["257970659", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["137219784", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["40999920", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["5304000", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["28584883", " ", "z"]], "+", RowBox[List["60990020", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["198104210", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["293526220", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["257970659", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["137219784", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["40999920", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["5304000", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["4289408", "-", RowBox[List["31265763", " ", "z"]], "+", RowBox[List["78415740", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["289815950", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["669043380", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["841543101", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["657447856", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["318240000", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["87834240", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["10608000", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["535873563225", " ", "\[Pi]", " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]], " ", SuperscriptBox["z", "3"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|