Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-47/8, b>=a > For fixed z and a=-47/8, b=45/8





http://functions.wolfram.com/07.23.03.b5qw.01









  


  










Input Form





Hypergeometric2F1[-(47/8), 45/8, -(7/2), z] == (1/3845632) (-((1/(1 - Sqrt[z])^(13/4)) (-1922816 + 6249152 Sqrt[z] - 25185456 z + 61933560 z^(3/2) - 183833871 z^2 + 408761496 z^(5/2) - 1200506736 z^3 + 2680886208 z^(7/2) - 12373320960 z^4 + 17803468800 z^(9/2) + 80719921152 z^5 - 225637761024 z^(11/2) + 83381256192 z^6 + 246397009920 z^(13/2) - 277387149312 z^7 + 85349892096 z^(15/2))) + (1/(1 + Sqrt[z])^(13/4)) (1922816 + 6249152 Sqrt[z] + 25185456 z + 61933560 z^(3/2) + 183833871 z^2 + 408761496 z^(5/2) + 1200506736 z^3 + 2680886208 z^(7/2) + 12373320960 z^4 + 17803468800 z^(9/2) - 80719921152 z^5 - 225637761024 z^(11/2) - 83381256192 z^6 + 246397009920 z^(13/2) + 277387149312 z^7 + 85349892096 z^(15/2)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["47", "8"]]], ",", FractionBox["45", "8"], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "3845632"], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", "1922816"]], "+", RowBox[List["6249152", " ", SqrtBox["z"]]], "-", RowBox[List["25185456", " ", "z"]], "+", RowBox[List["61933560", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["183833871", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["408761496", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["1200506736", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2680886208", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["12373320960", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["17803468800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["80719921152", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["225637761024", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["83381256192", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["246397009920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["277387149312", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["85349892096", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]]]], ")"]]]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]]], RowBox[List["(", RowBox[List["1922816", "+", RowBox[List["6249152", " ", SqrtBox["z"]]], "+", RowBox[List["25185456", " ", "z"]], "+", RowBox[List["61933560", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["183833871", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["408761496", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1200506736", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2680886208", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["12373320960", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["17803468800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["80719921152", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["225637761024", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["83381256192", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["246397009920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["277387149312", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["85349892096", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 47 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 45 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;47&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;45&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3845632 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 85349892096 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 277387149312 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 246397009920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 83381256192 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 225637761024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 80719921152 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17803468800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12373320960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2680886208 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1200506736 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 408761496 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 183833871 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 61933560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25185456 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 6249152 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> + </mo> <mn> 1922816 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 85349892096 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 277387149312 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 246397009920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 83381256192 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 225637761024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 80719921152 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17803468800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12373320960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2680886208 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1200506736 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 408761496 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 183833871 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 61933560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 25185456 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 6249152 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> - </mo> <mn> 1922816 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 47 <sep /> 8 </cn> </apply> <cn type='rational'> 45 <sep /> 8 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 3845632 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 13 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 85349892096 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 277387149312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 246397009920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 83381256192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 225637761024 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 80719921152 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17803468800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12373320960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2680886208 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1200506736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 408761496 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 183833871 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 61933560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25185456 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 6249152 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1922816 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 13 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 85349892096 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 277387149312 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 246397009920 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 83381256192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 225637761024 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 80719921152 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17803468800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12373320960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2680886208 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1200506736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 408761496 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 183833871 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 61933560 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 25185456 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 6249152 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1922816 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["47", "8"]]], ",", FractionBox["45", "8"], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1922816"]], "+", RowBox[List["6249152", " ", SqrtBox["z"]]], "-", RowBox[List["25185456", " ", "z"]], "+", RowBox[List["61933560", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["183833871", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["408761496", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "-", RowBox[List["1200506736", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2680886208", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "-", RowBox[List["12373320960", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["17803468800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["80719921152", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["225637761024", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["83381256192", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["246397009920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["277387149312", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["85349892096", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]]]]], "+", FractionBox[RowBox[List["1922816", "+", RowBox[List["6249152", " ", SqrtBox["z"]]], "+", RowBox[List["25185456", " ", "z"]], "+", RowBox[List["61933560", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["183833871", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["408761496", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["1200506736", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2680886208", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["12373320960", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["17803468800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["80719921152", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["225637761024", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "-", RowBox[List["83381256192", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["246397009920", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["277387149312", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["85349892096", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]]]]], "3845632"]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02