
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.23.03.b690.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Hypergeometric2F1[-(45/8), -(31/8), 5, z] ==
(65536 2^(1/4) (-4 Sqrt[1 - z] (17030656 - 420976528 z + 6150495015 z^2 -
91933776235 z^3 - 2714324453169 z^4 - 7314703330235 z^5 -
5070413165475 z^6 - 891964864505 z^7 - 17198012755 z^8 + 239972271 z^9)
EllipticE[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])] -
2 Sqrt[2 - 2 Sqrt[1 - z]] Sqrt[1 - z] (17030656 - 420976528 z +
6150495015 z^2 - 91933776235 z^3 - 2714324453169 z^4 -
7314703330235 z^5 - 5070413165475 z^6 - 891964864505 z^7 -
17198012755 z^8 + 239972271 z^9)
EllipticE[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])] +
(34061312 - 863241376 z + 12823718075 z^2 - 191470975325 z^3 +
6990006158807 z^4 + 41846923921775 z^5 + 56296383913105 z^6 +
21812192808425 z^7 + 1990298292125 z^8 + 79990757 z^9)
EllipticK[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])] +
2 Sqrt[1 - z] (17030656 - 420976528 z + 6150495015 z^2 -
91933776235 z^3 - 2714324453169 z^4 - 7314703330235 z^5 -
5070413165475 z^6 - 891964864505 z^7 - 17198012755 z^8 + 239972271 z^9)
EllipticK[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])]))/
(403208919589010535 Pi Sqrt[Sqrt[2] + Sqrt[1 - Sqrt[1 - z]]] z^4)
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["45", "8"]]], ",", RowBox[List["-", FractionBox["31", "8"]]], ",", "5", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["65536", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["17030656", "-", RowBox[List["420976528", " ", "z"]], "+", RowBox[List["6150495015", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["91933776235", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2714324453169", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7314703330235", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5070413165475", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["891964864505", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["17198012755", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["239972271", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["2", "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["17030656", "-", RowBox[List["420976528", " ", "z"]], "+", RowBox[List["6150495015", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["91933776235", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2714324453169", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7314703330235", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5070413165475", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["891964864505", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["17198012755", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["239972271", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["34061312", "-", RowBox[List["863241376", " ", "z"]], "+", RowBox[List["12823718075", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["191470975325", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["6990006158807", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["41846923921775", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["56296383913105", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["21812192808425", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1990298292125", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["79990757", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["17030656", "-", RowBox[List["420976528", " ", "z"]], "+", RowBox[List["6150495015", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["91933776235", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2714324453169", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7314703330235", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5070413165475", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["891964864505", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["17198012755", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["239972271", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["403208919589010535", " ", "\[Pi]", " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]], " ", SuperscriptBox["z", "4"]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 45 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 31 </mn> <mn> 8 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mn> 5 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["45", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["31", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 239972271 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17198012755 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 891964864505 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5070413165475 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7314703330235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2714324453169 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91933776235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6150495015 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 420976528 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 17030656 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 239972271 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17198012755 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 891964864505 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5070413165475 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7314703330235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2714324453169 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91933776235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6150495015 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 420976528 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 17030656 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 79990757 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1990298292125 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 21812192808425 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 56296383913105 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 41846923921775 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6990006158807 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 191470975325 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12823718075 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 863241376 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 34061312 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 239972271 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17198012755 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 891964864505 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5070413165475 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7314703330235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2714324453169 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91933776235 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6150495015 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 420976528 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 17030656 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 403208919589010535 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <msqrt> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </msqrt> <mo> + </mo> <msqrt> <mn> 2 </mn> </msqrt> </mrow> </msqrt> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 45 <sep /> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 31 <sep /> 8 </cn> </apply> </list> <list> <cn type='integer'> 5 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 239972271 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17198012755 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 891964864505 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5070413165475 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7314703330235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2714324453169 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91933776235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6150495015 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 420976528 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 17030656 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 239972271 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17198012755 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 891964864505 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5070413165475 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7314703330235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2714324453169 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91933776235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6150495015 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 420976528 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 17030656 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 79990757 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1990298292125 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 21812192808425 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 56296383913105 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 41846923921775 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6990006158807 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 191470975325 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12823718075 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 863241376 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 34061312 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 239972271 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17198012755 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 891964864505 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5070413165475 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7314703330235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2714324453169 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91933776235 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6150495015 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 420976528 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 17030656 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 403208919589010535 </cn> <pi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["45", "8"]]], ",", RowBox[List["-", FractionBox["31", "8"]]], ",", "5", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["65536", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["17030656", "-", RowBox[List["420976528", " ", "z"]], "+", RowBox[List["6150495015", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["91933776235", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2714324453169", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7314703330235", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5070413165475", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["891964864505", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["17198012755", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["239972271", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["2", "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["17030656", "-", RowBox[List["420976528", " ", "z"]], "+", RowBox[List["6150495015", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["91933776235", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2714324453169", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7314703330235", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5070413165475", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["891964864505", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["17198012755", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["239972271", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["34061312", "-", RowBox[List["863241376", " ", "z"]], "+", RowBox[List["12823718075", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["191470975325", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["6990006158807", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["41846923921775", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["56296383913105", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["21812192808425", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["1990298292125", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["79990757", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List["17030656", "-", RowBox[List["420976528", " ", "z"]], "+", RowBox[List["6150495015", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["91933776235", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["2714324453169", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["7314703330235", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["5070413165475", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["891964864505", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["17198012755", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["239972271", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["403208919589010535", " ", "\[Pi]", " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]], " ", SuperscriptBox["z", "4"]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|