| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.b7il.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(43/8), -(23/8), 11/2, -z] == 
 (1024 (Sqrt[z] (11200 + 233400 z + 2644305 z^2 + 24885975 z^3 + 
      1518478741 z^4 - 6342259677 z^5 + 6262606275 z^6 - 1661681595 z^7 + 
      65882055 z^8 + 1696073 z^9 + 48144 z^10) Cos[(5 ArcTan[Sqrt[z]])/4] - 
    (8960 + 185040 z + 2080707 z^2 + 19517721 z^3 + 295372875 z^4 - 
      3844137635 z^5 + 7395334245 z^6 - 3845425461 z^7 + 466210617 z^8 + 
      2131375 z^9 + 60180 z^10) Sin[(5 ArcTan[Sqrt[z]])/4]))/
  (1172146681277 z^(9/2) (1 + z)^(5/8)) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["43", "8"]]], ",", RowBox[List["-", FractionBox["23", "8"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["1024", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["11200", "+", RowBox[List["233400", " ", "z"]], "+", RowBox[List["2644305", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["24885975", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1518478741", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["6342259677", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["6262606275", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1661681595", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["65882055", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["1696073", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["48144", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["5", " ", RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["8960", "+", RowBox[List["185040", " ", "z"]], "+", RowBox[List["2080707", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["19517721", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["295372875", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3844137635", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["7395334245", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["3845425461", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["466210617", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["2131375", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["60180", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["5", " ", RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["1172146681277", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["5", "/", "8"]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 43 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 23 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 11 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["43", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["23", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1024 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 48144 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1696073 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 65882055 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1661681595 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6262606275 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6342259677 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1518478741 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 24885975 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2644305 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 233400 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 11200 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 60180 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2131375 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 466210617 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3845425461 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 7395334245 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3844137635 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 295372875 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 19517721 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2080707 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 185040 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 8960 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 5 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1172146681277 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 43 <sep /> 8 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 23 <sep /> 8 </cn>  </apply>  </list>  <list>  <cn type='rational'> 11 <sep /> 2 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1024 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 48144 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1696073 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 65882055 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1661681595 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6262606275 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6342259677 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1518478741 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 24885975 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2644305 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 233400 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 11200 </cn>  </apply>  <apply>  <cos />  <apply>  <times />  <cn type='rational'> 5 <sep /> 4 </cn>  <apply>  <arctan />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 60180 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2131375 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 466210617 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3845425461 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 7395334245 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3844137635 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 295372875 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 19517721 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2080707 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 185040 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 8960 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <cn type='rational'> 5 <sep /> 4 </cn>  <apply>  <arctan />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 1172146681277 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 5 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["43", "8"]]], ",", RowBox[List["-", FractionBox["23", "8"]]], ",", FractionBox["11", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["1024", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["11200", "+", RowBox[List["233400", " ", "z"]], "+", RowBox[List["2644305", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["24885975", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1518478741", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["6342259677", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["6262606275", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1661681595", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["65882055", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["1696073", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["48144", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["5", " ", RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["8960", "+", RowBox[List["185040", " ", "z"]], "+", RowBox[List["2080707", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["19517721", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["295372875", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3844137635", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["7395334245", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["3845425461", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["466210617", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["2131375", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["60180", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["5", " ", RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]]]], ")"]]]], RowBox[List["1172146681277", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["5", "/", "8"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |