| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.b8ce.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(43/8), 47/8, 6, z] == 
 (262144 2^(3/4) (1 + Sqrt[1 - z])^(1/4) 
   (-4 (2650374144 + 6139343232 z + 17952386265 z^2 + 71681021973 z^3 + 
      508967358471 z^4 - 14828539830945 z^5 + 59220323696540 z^6 - 
      103886448268400 z^7 + 94432835228160 z^8 - 43762079412480 z^9 + 
      8213528294400 z^10) EllipticE[
      1/2 - 1/(Sqrt[2] Sqrt[1 + Sqrt[1 - z]])] - 
    3 Sqrt[2] Sqrt[1 + Sqrt[1 - z]] Sqrt[1 - z] (-331296768 - 1008125712 z - 
      2999869587 z^2 - 11222192718 z^3 - 8446613712075 z^4 + 
      42081199936140 z^5 - 83632777977040 z^6 + 83097498415360 z^7 - 
      41298020924160 z^8 + 8213528294400 z^9) 
     EllipticK[1/2 - 1/(Sqrt[2] Sqrt[1 + Sqrt[1 - z]])] - 
    20 Sqrt[2] Sqrt[1 + Sqrt[1 - z]] (-82824192 - 205442820 z - 
      598857732 z^2 - 2350702629 z^3 + 1239860359980 z^4 - 
      6837745055685 z^5 + 15896080502150 z^6 - 19815219045440 z^7 + 
      13937686139520 z^8 - 5238628412160 z^9 + 821352829440 z^10) 
     EllipticK[1/2 - 1/(Sqrt[2] Sqrt[1 + Sqrt[1 - z]])] + 
    2 (2650374144 + 6139343232 z + 17952386265 z^2 + 71681021973 z^3 + 
      508967358471 z^4 - 14828539830945 z^5 + 59220323696540 z^6 - 
      103886448268400 z^7 + 94432835228160 z^8 - 43762079412480 z^9 + 
      8213528294400 z^10) EllipticK[
      1/2 - 1/(Sqrt[2] Sqrt[1 + Sqrt[1 - z]])]))/(6586042357551732075 Pi z^5) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["43", "8"]]], ",", FractionBox["47", "8"], ",", "6", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["262144", " ", SuperscriptBox["2", RowBox[List["3", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["2650374144", "+", RowBox[List["6139343232", " ", "z"]], "+", RowBox[List["17952386265", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["71681021973", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["508967358471", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14828539830945", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["59220323696540", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["103886448268400", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["94432835228160", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["43762079412480", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["8213528294400", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List["3", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "331296768"]], "-", RowBox[List["1008125712", " ", "z"]], "-", RowBox[List["2999869587", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11222192718", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["8446613712075", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["42081199936140", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["83632777977040", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["83097498415360", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["41298020924160", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["8213528294400", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List["20", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "82824192"]], "-", RowBox[List["205442820", " ", "z"]], "-", RowBox[List["598857732", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2350702629", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1239860359980", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["6837745055685", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["15896080502150", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["19815219045440", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["13937686139520", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["5238628412160", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["821352829440", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["2650374144", "+", RowBox[List["6139343232", " ", "z"]], "+", RowBox[List["17952386265", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["71681021973", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["508967358471", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14828539830945", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["59220323696540", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["103886448268400", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["94432835228160", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["43762079412480", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["8213528294400", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["6586042357551732075", " ", "\[Pi]", " ", SuperscriptBox["z", "5"]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 43 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 47 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mn> 6 </mn>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["43", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["47", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 6586042357551732075 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 262144 </mn>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 4 </mn>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8213528294400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 43762079412480 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 94432835228160 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 103886448268400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 59220323696540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 14828539830945 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 508967358471 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 71681021973 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 17952386265 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6139343232 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 2650374144 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8213528294400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 41298020924160 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 83097498415360 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 83632777977040 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 42081199936140 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 8446613712075 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 11222192718 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2999869587 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1008125712 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 331296768 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 20 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 821352829440 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5238628412160 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13937686139520 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 19815219045440 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 15896080502150 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6837745055685 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1239860359980 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2350702629 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 598857732 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 205442820 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 82824192 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 8213528294400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 43762079412480 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 94432835228160 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 103886448268400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 59220323696540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 14828539830945 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 508967358471 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 71681021973 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 17952386265 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6139343232 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 2650374144 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mrow>  <msqrt>  <mn> 2 </mn>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 43 <sep /> 8 </cn>  </apply>  <cn type='rational'> 47 <sep /> 8 </cn>  </list>  <list>  <cn type='integer'> 6 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 6586042357551732075 </cn>  <pi />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 262144 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -4 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8213528294400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 43762079412480 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 94432835228160 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 103886448268400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 59220323696540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 14828539830945 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 508967358471 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 71681021973 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 17952386265 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6139343232 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 2650374144 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8213528294400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 41298020924160 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 83097498415360 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 83632777977040 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 42081199936140 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 8446613712075 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 11222192718 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2999869587 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1008125712 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -331296768 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 20 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 821352829440 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5238628412160 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13937686139520 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 19815219045440 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 15896080502150 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6837745055685 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1239860359980 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2350702629 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 598857732 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 205442820 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> -82824192 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8213528294400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 43762079412480 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 94432835228160 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 103886448268400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 59220323696540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 14828539830945 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 508967358471 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 71681021973 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 17952386265 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6139343232 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 2650374144 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <plus />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["43", "8"]]], ",", FractionBox["47", "8"], ",", "6", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["262144", " ", SuperscriptBox["2", RowBox[List["3", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", RowBox[List["(", RowBox[List["2650374144", "+", RowBox[List["6139343232", " ", "z"]], "+", RowBox[List["17952386265", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["71681021973", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["508967358471", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14828539830945", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["59220323696540", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["103886448268400", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["94432835228160", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["43762079412480", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["8213528294400", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List["3", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "331296768"]], "-", RowBox[List["1008125712", " ", "z"]], "-", RowBox[List["2999869587", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11222192718", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["8446613712075", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["42081199936140", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["83632777977040", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["83097498415360", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["41298020924160", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["8213528294400", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "-", RowBox[List["20", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "82824192"]], "-", RowBox[List["205442820", " ", "z"]], "-", RowBox[List["598857732", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2350702629", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1239860359980", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["6837745055685", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["15896080502150", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["19815219045440", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["13937686139520", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["5238628412160", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["821352829440", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["2650374144", "+", RowBox[List["6139343232", " ", "z"]], "+", RowBox[List["17952386265", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["71681021973", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["508967358471", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["14828539830945", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["59220323696540", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["103886448268400", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["94432835228160", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["43762079412480", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["8213528294400", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox["1", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["6586042357551732075", " ", "\[Pi]", " ", SuperscriptBox["z", "5"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |