| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.b8tm.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(41/8), -(13/8), -(7/2), z] == 
 (1/3584) ((1 + Sqrt[z])^(13/4) (1792 - 5824 Sqrt[z] + 8112 z - 
     7800 z^(3/2) + 6591 z^2 - 4680 z^(5/2) + 2704 z^3 - 832 z^(7/2)) + 
   (1 - Sqrt[z])^(13/4) (1792 + 5824 Sqrt[z] + 8112 z + 7800 z^(3/2) + 
     6591 z^2 + 4680 z^(5/2) + 2704 z^3 + 832 z^(7/2))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["41", "8"]]], ",", RowBox[List["-", FractionBox["13", "8"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "3584"], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1792", "-", RowBox[List["5824", " ", SqrtBox["z"]]], "+", RowBox[List["8112", " ", "z"]], "-", RowBox[List["7800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["6591", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["4680", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["2704", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["832", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1792", "+", RowBox[List["5824", " ", SqrtBox["z"]]], "+", RowBox[List["8112", " ", "z"]], "+", RowBox[List["7800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["6591", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4680", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["2704", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["832", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 41 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 13 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["41", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["13", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 3584 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 832 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2704 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4680 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6591 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 7800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8112 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 5824 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1792 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 832 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2704 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 4680 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 6591 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 7800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8112 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5824 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 1792 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 41 <sep /> 8 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 13 <sep /> 8 </cn>  </apply>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 3584 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 832 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2704 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4680 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6591 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 7800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8112 </cn>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 5824 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 1792 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 13 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 13 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -832 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2704 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 4680 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 6591 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 7800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8112 </cn>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5824 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1792 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["41", "8"]]], ",", RowBox[List["-", FractionBox["13", "8"]]], ",", RowBox[List["-", FractionBox["7", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1792", "-", RowBox[List["5824", " ", SqrtBox["z"]]], "+", RowBox[List["8112", " ", "z"]], "-", RowBox[List["7800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["6591", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["4680", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["2704", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["832", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]], RowBox[List["13", "/", "4"]]], " ", RowBox[List["(", RowBox[List["1792", "+", RowBox[List["5824", " ", SqrtBox["z"]]], "+", RowBox[List["8112", " ", "z"]], "+", RowBox[List["7800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["6591", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["4680", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["2704", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["832", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]], ")"]]]]]], "3584"]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |