Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-39/8, b>=a > For fixed z and a=-39/8, b=29/8





http://functions.wolfram.com/07.23.03.bahz.01









  


  










Input Form





Hypergeometric2F1[-(39/8), 29/8, 5/2, -z] == (1/(16041795 z^(3/2) (1 + z)^(1/8))) (16 (Sqrt[z] (-713 + 1022086 z + 7501383 z^2 + 20004448 z^3 + 25194752 z^4 + 15273984 z^5 + 3604480 z^6) Cos[ArcTan[Sqrt[z]]/4] - 4 (-713 + 19251 z + 263654 z^2 + 901732 z^3 + 1316832 z^4 + 884224 z^5 + 225280 z^6) Sin[ArcTan[Sqrt[z]]/4]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["39", "8"]]], ",", FractionBox["29", "8"], ",", FractionBox["5", "2"], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["16041795", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], RowBox[List["(", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "713"]], "+", RowBox[List["1022086", " ", "z"]], "+", RowBox[List["7501383", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["20004448", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["25194752", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["15273984", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3604480", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]], "4"], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "713"]], "+", RowBox[List["19251", " ", "z"]], "+", RowBox[List["263654", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["901732", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1316832", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["884224", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["225280", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]], "4"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 39 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 29 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;39&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;29&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16041795 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mroot> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 16 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3604480 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 15273984 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 25194752 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20004448 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7501383 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1022086 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 713 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 225280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 884224 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1316832 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 901732 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 263654 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19251 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 713 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 39 <sep /> 8 </cn> </apply> <cn type='rational'> 29 <sep /> 8 </cn> </list> <list> <cn type='rational'> 5 <sep /> 2 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16041795 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3604480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 15273984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 25194752 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20004448 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7501383 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1022086 </cn> <ci> z </ci> </apply> <cn type='integer'> -713 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <arctan /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 225280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 884224 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1316832 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 901732 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 263654 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19251 </cn> <ci> z </ci> </apply> <cn type='integer'> -713 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <arctan /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["39", "8"]]], ",", FractionBox["29", "8"], ",", FractionBox["5", "2"], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "713"]], "+", RowBox[List["1022086", " ", "z"]], "+", RowBox[List["7501383", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["20004448", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["25194752", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["15273984", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["3604480", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]], "4"], "]"]]]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "713"]], "+", RowBox[List["19251", " ", "z"]], "+", RowBox[List["263654", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["901732", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1316832", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["884224", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["225280", " ", SuperscriptBox["z", "6"]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["ArcTan", "[", SqrtBox["z"], "]"]], "4"], "]"]]]]]], ")"]]]], RowBox[List["16041795", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02