Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-37/8, b>=a > For fixed z and a=-37/8, b=5/8





http://functions.wolfram.com/07.23.03.bbmd.01









  


  










Input Form





Hypergeometric2F1[-(37/8), 5/8, 9/2, z] == (1/(1055400885 z^(7/2))) (256 ((-Sqrt[z]) (51504 - 477485 z + 2109518 z^2 - 11637126 z^3 + 5759936 z^4 - 3372053 z^5 + 1379034 z^6 - 338928 z^7 + 37536 z^8) Cos[(3 ArcSin[Sqrt[z]])/4] - (1/Sqrt[1 - z]) (2 (-34336 + 347652 z - 1677099 z^2 + 6200867 z^3 - 7084782 z^4 + 3646650 z^5 - 2010775 z^6 + 771903 z^7 - 178848 z^8 + 18768 z^9) Sin[(3 ArcSin[Sqrt[z]])/4])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["37", "8"]]], ",", FractionBox["5", "8"], ",", FractionBox["9", "2"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["1055400885", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]], RowBox[List["(", RowBox[List["256", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List["51504", "-", RowBox[List["477485", " ", "z"]], "+", RowBox[List["2109518", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11637126", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["5759936", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3372053", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1379034", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["338928", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["37536", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "-", "z"]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "34336"]], "+", RowBox[List["347652", " ", "z"]], "-", RowBox[List["1677099", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["6200867", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["7084782", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3646650", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2010775", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["771903", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["178848", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["18768", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 37 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;37&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1055400885 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 37536 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 338928 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1379034 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3372053 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5759936 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 11637126 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2109518 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 477485 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 51504 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18768 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 178848 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 771903 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2010775 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3646650 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7084782 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6200867 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1677099 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 347652 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 34336 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 37 <sep /> 8 </cn> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </list> <list> <cn type='rational'> 9 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1055400885 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 37536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 338928 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1379034 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3372053 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5759936 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 11637126 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2109518 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 477485 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 51504 </cn> </apply> <apply> <cos /> <apply> <times /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 18768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 178848 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 771903 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2010775 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3646650 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7084782 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6200867 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1677099 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 347652 </cn> <ci> z </ci> </apply> <cn type='integer'> -34336 </cn> </apply> <apply> <sin /> <apply> <times /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <arcsin /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["37", "8"]]], ",", FractionBox["5", "8"], ",", FractionBox["9", "2"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["256", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox["z"]]], " ", RowBox[List["(", RowBox[List["51504", "-", RowBox[List["477485", " ", "z"]], "+", RowBox[List["2109518", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["11637126", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["5759936", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["3372053", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["1379034", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["338928", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["37536", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Cos", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "34336"]], "+", RowBox[List["347652", " ", "z"]], "-", RowBox[List["1677099", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["6200867", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["7084782", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3646650", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2010775", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["771903", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["178848", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["18768", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSin", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], SqrtBox[RowBox[List["1", "-", "z"]]]]]], ")"]]]], RowBox[List["1055400885", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02