| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.bc1e.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(37/8), 31/8, -(9/2), z] == 
 (1/14837760) ((1/(1 - Sqrt[z])^(15/4)) (7418880 - 27820800 Sqrt[z] + 
     67800320 z - 133114800 z^(3/2) + 231126540 z^2 - 368382835 z^(5/2) + 
     554703696 z^3 - 798688800 z^(7/2) + 1118705280 z^4 - 
     1530144000 z^(9/2) + 2121799680 z^5 - 2402070528 z^(11/2) + 
     1581465600 z^6 - 421724160 z^(13/2)) + (1/(1 + Sqrt[z])^(15/4)) 
    (7418880 + 27820800 Sqrt[z] + 67800320 z + 133114800 z^(3/2) + 
     231126540 z^2 + 368382835 z^(5/2) + 554703696 z^3 + 798688800 z^(7/2) + 
     1118705280 z^4 + 1530144000 z^(9/2) + 2121799680 z^5 + 
     2402070528 z^(11/2) + 1581465600 z^6 + 421724160 z^(13/2))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["37", "8"]]], ",", FractionBox["31", "8"], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "14837760"], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]], RowBox[List["15", "/", "4"]]]], RowBox[List["(", RowBox[List["7418880", "-", RowBox[List["27820800", " ", SqrtBox["z"]]], "+", RowBox[List["67800320", " ", "z"]], "-", RowBox[List["133114800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["231126540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["368382835", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["554703696", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["798688800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["1118705280", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1530144000", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2121799680", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2402070528", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["1581465600", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["421724160", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], RowBox[List["15", "/", "4"]]]], RowBox[List["(", RowBox[List["7418880", "+", RowBox[List["27820800", " ", SqrtBox["z"]]], "+", RowBox[List["67800320", " ", "z"]], "+", RowBox[List["133114800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["231126540", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["368382835", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["554703696", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["798688800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["1118705280", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1530144000", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2121799680", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2402070528", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["1581465600", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["421724160", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], ")"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 37 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 31 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 9 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["37", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["31", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 14837760 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 15 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 421724160 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1581465600 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2402070528 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2121799680 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 1530144000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1118705280 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 798688800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 554703696 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 368382835 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 231126540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 133114800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 67800320 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 27820800 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 7418880 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 15 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 421724160 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1581465600 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2402070528 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2121799680 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1530144000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 9 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1118705280 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 798688800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 7 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 554703696 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 368382835 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 5 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 231126540 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 133114800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 67800320 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 27820800 </mn>  <mo> ⁢ </mo>  <msqrt>  <mi> z </mi>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 7418880 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <cn type='rational'> 31 <sep /> 8 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 14837760 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 15 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -421724160 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 13 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1581465600 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2402070528 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2121799680 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1530144000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1118705280 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 798688800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 554703696 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 368382835 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 231126540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 133114800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 67800320 </cn>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 27820800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 7418880 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 15 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 421724160 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 13 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1581465600 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2402070528 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2121799680 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1530144000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1118705280 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 798688800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 7 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 554703696 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 368382835 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 5 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 231126540 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 133114800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 67800320 </cn>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 27820800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 7418880 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["37", "8"]]], ",", FractionBox["31", "8"], ",", RowBox[List["-", FractionBox["9", "2"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["7418880", "-", RowBox[List["27820800", " ", SqrtBox["z"]]], "+", RowBox[List["67800320", " ", "z"]], "-", RowBox[List["133114800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["231126540", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["368382835", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["554703696", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["798688800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["1118705280", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1530144000", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2121799680", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2402070528", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["1581465600", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["421724160", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SqrtBox["z"]]], ")"]], RowBox[List["15", "/", "4"]]]], "+", FractionBox[RowBox[List["7418880", "+", RowBox[List["27820800", " ", SqrtBox["z"]]], "+", RowBox[List["67800320", " ", "z"]], "+", RowBox[List["133114800", " ", SuperscriptBox["z", RowBox[List["3", "/", "2"]]]]], "+", RowBox[List["231126540", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["368382835", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]], "+", RowBox[List["554703696", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["798688800", " ", SuperscriptBox["z", RowBox[List["7", "/", "2"]]]]], "+", RowBox[List["1118705280", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["1530144000", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "+", RowBox[List["2121799680", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2402070528", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["1581465600", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["421724160", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox["z"]]], ")"]], RowBox[List["15", "/", "4"]]]]]], "14837760"]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |