|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.bc2p.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(37/8), 31/8, 6, z] ==
(524288 2^(1/4) (2 Sqrt[2] Sqrt[1 + Sqrt[1 - z] - z]
(-457080832 + 1201622656 z - 141986871 z^2 - 230535123 z^3 -
774797205 z^4 + 6965516943 z^5 - 13592812464 z^6 + 12209053824 z^7 -
5384890368 z^8 + 948879360 z^9) EllipticE[
1/2 - Sqrt[1 - z]/(Sqrt[2] Sqrt[1 + Sqrt[1 - z] - z])] -
Sqrt[1 - z] (-457080832 + 1201622656 z - 141986871 z^2 - 230535123 z^3 -
774797205 z^4 + 6965516943 z^5 - 13592812464 z^6 + 12209053824 z^7 -
5384890368 z^8 + 948879360 z^9) EllipticK[
1/2 - Sqrt[1 - z]/(Sqrt[2] Sqrt[1 + Sqrt[1 - z] - z])] -
Sqrt[2] Sqrt[1 + Sqrt[1 - z] - z] (-457080832 + 1201622656 z -
141986871 z^2 - 230535123 z^3 - 774797205 z^4 + 6965516943 z^5 -
13592812464 z^6 + 12209053824 z^7 - 5384890368 z^8 + 948879360 z^9)
EllipticK[1/2 - Sqrt[1 - z]/(Sqrt[2] Sqrt[1 + Sqrt[1 - z] - z])] -
(-457080832 + 1373027968 z - 545726727 z^2 - 275604342 z^3 -
722948772 z^4 - 12609463482 z^5 + 49727761083 z^6 - 75680887392 z^7 +
58753651968 z^8 - 23358246912 z^9 + 3795517440 z^10)
EllipticK[1/2 - Sqrt[1 - z]/(Sqrt[2] Sqrt[1 + Sqrt[1 - z] - z])]))/
(5207727357267435 Pi (1 + Sqrt[1 - z])^(1/4) (1 - z)^(1/4) z^5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["37", "8"]]], ",", FractionBox["31", "8"], ",", "6", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["524288", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1201622656", " ", "z"]], "-", RowBox[List["141986871", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230535123", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["774797205", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6965516943", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13592812464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["12209053824", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["5384890368", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["948879360", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1201622656", " ", "z"]], "-", RowBox[List["141986871", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230535123", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["774797205", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6965516943", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13592812464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["12209053824", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["5384890368", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["948879360", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1201622656", " ", "z"]], "-", RowBox[List["141986871", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230535123", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["774797205", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6965516943", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13592812464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["12209053824", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["5384890368", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["948879360", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1373027968", " ", "z"]], "-", RowBox[List["545726727", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["275604342", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["722948772", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["12609463482", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["49727761083", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["75680887392", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["58753651968", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["23358246912", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["3795517440", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["5207727357267435", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", "5"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 37 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 31 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 6 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["37", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["31", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 524288 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 948879360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5384890368 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12209053824 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13592812464 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6965516943 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 774797205 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 230535123 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 141986871 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1201622656 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 457080832 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 948879360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5384890368 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12209053824 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13592812464 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6965516943 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 774797205 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 230535123 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 141986871 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1201622656 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 457080832 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 948879360 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5384890368 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12209053824 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13592812464 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6965516943 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 774797205 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 230535123 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 141986871 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1201622656 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 457080832 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3795517440 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 23358246912 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 58753651968 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 75680887392 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 49727761083 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12609463482 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 722948772 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 275604342 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 545726727 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1373027968 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 457080832 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5207727357267435 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mroot> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 37 <sep /> 8 </cn> </apply> <cn type='rational'> 31 <sep /> 8 </cn> </list> <list> <cn type='integer'> 6 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 524288 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 948879360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5384890368 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12209053824 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13592812464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6965516943 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 774797205 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 230535123 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 141986871 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1201622656 </cn> <ci> z </ci> </apply> <cn type='integer'> -457080832 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 948879360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5384890368 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12209053824 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13592812464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6965516943 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 774797205 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 230535123 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 141986871 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1201622656 </cn> <ci> z </ci> </apply> <cn type='integer'> -457080832 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 948879360 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5384890368 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12209053824 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13592812464 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6965516943 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 774797205 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 230535123 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 141986871 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1201622656 </cn> <ci> z </ci> </apply> <cn type='integer'> -457080832 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3795517440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 23358246912 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 58753651968 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 75680887392 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 49727761083 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12609463482 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 722948772 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 275604342 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 545726727 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1373027968 </cn> <ci> z </ci> </apply> <cn type='integer'> -457080832 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 5207727357267435 </cn> <pi /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["37", "8"]]], ",", FractionBox["31", "8"], ",", "6", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["524288", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1201622656", " ", "z"]], "-", RowBox[List["141986871", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230535123", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["774797205", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6965516943", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13592812464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["12209053824", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["5384890368", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["948879360", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1201622656", " ", "z"]], "-", RowBox[List["141986871", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230535123", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["774797205", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6965516943", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13592812464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["12209053824", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["5384890368", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["948879360", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1201622656", " ", "z"]], "-", RowBox[List["141986871", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["230535123", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["774797205", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["6965516943", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["13592812464", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["12209053824", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["5384890368", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["948879360", " ", SuperscriptBox["z", "9"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "457080832"]], "+", RowBox[List["1373027968", " ", "z"]], "-", RowBox[List["545726727", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["275604342", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["722948772", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["12609463482", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["49727761083", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["75680887392", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["58753651968", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["23358246912", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["3795517440", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[SqrtBox[RowBox[List["1", "-", "z"]]], RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]], "-", "z"]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["5207727357267435", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", "5"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|