|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.bd3s.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(35/8), 4, -(27/8), -z] ==
(1/24576) (35 (-((8 (3609 + 6490 z + 3009 z^2))/(1 + z)^3) -
129387 (-(8/35) + (8 z)/27 - (8 z^2)/19 + (8 z^3)/11 - (8 z^4)/3 +
(-1)^(1/8) z^(35/8) ((-(-1)^(1/4)) Log[1 - (-1)^(1/8) z^(1/8)] +
(-1)^(1/4) Log[1 + (-1)^(1/8) z^(1/8)] +
Log[1 - (-1)^(3/8) z^(1/8)] - Log[1 + (-1)^(3/8) z^(1/8)] +
(-1)^(3/4) Log[1 - (-1)^(5/8) z^(1/8)] - (-1)^(3/4)
Log[1 + (-1)^(5/8) z^(1/8)] - I Log[1 - (-1)^(7/8) z^(1/8)] +
I Log[1 + (-1)^(7/8) z^(1/8)]))))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["35", "8"]]], ",", "4", ",", RowBox[List["-", FractionBox["27", "8"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "24576"], RowBox[List["(", RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List["3609", "+", RowBox[List["6490", " ", "z"]], "+", RowBox[List["3009", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]]]], "-", RowBox[List["129387", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["8", "35"]]], "+", FractionBox[RowBox[List["8", " ", "z"]], "27"], "-", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "2"]]], "19"], "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "3"]]], "11"], "-", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "4"]]], "3"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["35", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 35 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 27 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["35", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["27", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 24576 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 35 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3009 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6490 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3609 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> - </mo> <mrow> <mn> 129387 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 35 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mn> 3 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mn> 11 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mn> 19 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mn> 27 </mn> </mfrac> <mo> - </mo> <mfrac> <mn> 8 </mn> <mn> 35 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 35 <sep /> 8 </cn> </apply> <cn type='integer'> 4 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 27 <sep /> 8 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 24576 </cn> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3009 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6490 </cn> <ci> z </ci> </apply> <cn type='integer'> 3609 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 129387 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 35 <sep /> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 11 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 19 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> z </ci> <apply> <power /> <cn type='integer'> 27 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 8 <sep /> 35 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["35", "8"]]], ",", "4", ",", RowBox[List["-", FractionBox["27", "8"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List["3609", "+", RowBox[List["6490", " ", "z"]], "+", RowBox[List["3009", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "3"]]]], "-", RowBox[List["129387", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["8", "35"]]], "+", FractionBox[RowBox[List["8", " ", "z"]], "27"], "-", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "2"]]], "19"], "+", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "3"]]], "11"], "-", FractionBox[RowBox[List["8", " ", SuperscriptBox["z", "4"]]], "3"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["35", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["5", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["7", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "24576"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|