Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-25/8, b>=a > For fixed z and a=-25/8, b=1





http://functions.wolfram.com/07.23.03.bizn.01









  


  










Input Form





Hypergeometric2F1[-(25/8), 1, 6, z] == -((1/(16375359 z^5)) (8 (32768 (-1 + (1 - z)^(1/8)) - 4096 (-65 + 64 (1 - z)^(1/8)) z + 256 (-3705 + 3584 (1 - z)^(1/8)) z^2 - 224 (-8645 + 8192 (1 - z)^(1/8)) z^3 + 35 (-70889 + 65536 (1 - z)^(1/8)) z^4 - 1835008 (1 - z)^(1/8) z^5 + 917504 (1 - z)^(1/8) z^6 - 262144 (1 - z)^(1/8) z^7 + 32768 (1 - z)^(1/8) z^8)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["25", "8"]]], ",", "1", ",", "6", ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["16375359", " ", SuperscriptBox["z", "5"]]]], RowBox[List["(", RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["32768", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]], ")"]]]], "-", RowBox[List["4096", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "65"]], "+", RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["256", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3705"]], "+", RowBox[List["3584", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["224", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8645"]], "+", RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "70889"]], "+", RowBox[List["65536", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1835008", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["917504", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["262144", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["32768", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "8"]]]]], ")"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 25 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 6 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;25&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16375359 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32768 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 262144 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 917504 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1835008 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 65536 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mrow> <mo> - </mo> <mn> 70889 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 224 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8192 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mrow> <mo> - </mo> <mn> 8645 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3584 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mrow> <mo> - </mo> <mn> 3705 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4096 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mrow> <mo> - </mo> <mn> 65 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 32768 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 25 <sep /> 8 </cn> </apply> <cn type='integer'> 1 </cn> </list> <list> <cn type='integer'> 6 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16375359 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 262144 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 917504 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1835008 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> -70889 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 224 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8192 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> -8645 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3584 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> -3705 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> -65 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 32768 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["25", "8"]]], ",", "1", ",", "6", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["32768", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]], ")"]]]], "-", RowBox[List["4096", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "65"]], "+", RowBox[List["64", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["256", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3705"]], "+", RowBox[List["3584", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["224", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8645"]], "+", RowBox[List["8192", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["35", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "70889"]], "+", RowBox[List["65536", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1835008", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["917504", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["262144", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["32768", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]], " ", SuperscriptBox["z", "8"]]]]], ")"]]]], RowBox[List["16375359", " ", SuperscriptBox["z", "5"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02