Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-13/8, b>=a > For fixed z and a=-13/8, b=21/8





http://functions.wolfram.com/07.23.03.bqcu.01









  


  










Input Form





Hypergeometric2F1[-(13/8), 21/8, -(11/2), -z] == (1/(135168 (1 + z)^(13/2))) (Sqrt[1 + z] (135168 + 744192 z + 1612640 z^2 + 1643047 z^3 + 631005 z^4 - 101959 z^5 + 101959 z^6 + 128340 z^7 + 34224 z^8) Cosh[(3 ArcSinh[Sqrt[z]])/4] - Sqrt[z] (101376 + 572928 z + 1281636 z^2 + 1364387 z^3 + 573965 z^4 - 64883 z^5 + 161851 z^6 + 145452 z^7 + 34224 z^8) Sinh[(3 ArcSinh[Sqrt[z]])/4])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["13", "8"]]], ",", FractionBox["21", "8"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["135168", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["13", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["135168", "+", RowBox[List["744192", " ", "z"]], "+", RowBox[List["1612640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1643047", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["631005", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["101959", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["101959", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["128340", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["34224", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], "-", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["101376", "+", RowBox[List["572928", " ", "z"]], "+", RowBox[List["1281636", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1364387", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["573965", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["64883", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["161851", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["145452", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["34224", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 13 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 21 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;13&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;21&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 135168 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 34224 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 128340 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 101959 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 101959 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 631005 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1643047 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1612640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 744192 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 135168 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 34224 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 145452 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 161851 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 64883 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 573965 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1364387 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1281636 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 572928 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 101376 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 13 <sep /> 8 </cn> </apply> <cn type='rational'> 21 <sep /> 8 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 135168 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 34224 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 128340 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 101959 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 101959 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 631005 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1643047 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1612640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 744192 </cn> <ci> z </ci> </apply> <cn type='integer'> 135168 </cn> </apply> <apply> <cosh /> <apply> <times /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 34224 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 145452 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 161851 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64883 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 573965 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1364387 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1281636 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 572928 </cn> <ci> z </ci> </apply> <cn type='integer'> 101376 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <arcsinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["13", "8"]]], ",", FractionBox["21", "8"], ",", RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["(", RowBox[List["135168", "+", RowBox[List["744192", " ", "z"]], "+", RowBox[List["1612640", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1643047", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["631005", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["101959", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["101959", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["128340", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["34224", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]], "-", RowBox[List[SqrtBox["z"], " ", RowBox[List["(", RowBox[List["101376", "+", RowBox[List["572928", " ", "z"]], "+", RowBox[List["1281636", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1364387", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["573965", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["64883", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["161851", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["145452", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["34224", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List["3", " ", RowBox[List["ArcSinh", "[", SqrtBox["z"], "]"]]]], "4"], "]"]]]]]], RowBox[List["135168", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["13", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02