Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-13/8, b>=a > For fixed z and a=-13/8, b=47/8





http://functions.wolfram.com/07.23.03.bqv8.01









  


  










Input Form





Hypergeometric2F1[-(13/8), 47/8, -(21/4), z] == (1/(16290624 2^(1/4) (-1 + z)^9)) ((1 + Sqrt[1 - z])^(1/4) (-8145312 + 57986864 z - 163962906 z^2 + 211539257 z^3 - 64843072 z^4 - 91185570 z^5 + 340298818 z^6 - 386144367 z^7 + 226898784 z^8 - 70312704 z^9 + 9146368 z^10 + (1/Sqrt[1 - z]) (2 (-4072656 + 31029760 z - 95969087 z^2 + 143390717 z^3 - 76711670 z^4 - 38500574 z^5 - 601761107 z^6 + 1179436641 z^7 - 1073462376 z^8 + 548976960 z^9 - 153201664 z^10 + 18292736 z^11))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["13", "8"]]], ",", FractionBox["47", "8"], ",", RowBox[List["-", FractionBox["21", "4"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["16290624", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8145312"]], "+", RowBox[List["57986864", " ", "z"]], "-", RowBox[List["163962906", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["211539257", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["64843072", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["91185570", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["340298818", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["386144367", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["226898784", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["70312704", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["9146368", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["1", "-", "z"]]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4072656"]], "+", RowBox[List["31029760", " ", "z"]], "-", RowBox[List["95969087", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["143390717", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["76711670", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["38500574", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["601761107", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1179436641", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["1073462376", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["548976960", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["153201664", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["18292736", " ", SuperscriptBox["z", "11"]]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 13 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 47 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;13&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;47&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;21&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 16290624 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 9 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mroot> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9146368 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 70312704 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 226898784 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 386144367 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 340298818 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 91185570 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 64843072 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 211539257 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 163962906 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 57986864 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18292736 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 153201664 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 548976960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1073462376 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1179436641 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 601761107 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 38500574 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 76711670 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 143390717 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 95969087 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 31029760 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 4072656 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 8145312 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 13 <sep /> 8 </cn> </apply> <cn type='rational'> 47 <sep /> 8 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 21 <sep /> 4 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 16290624 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 9 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9146368 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 70312704 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 226898784 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 386144367 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 340298818 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 91185570 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64843072 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 211539257 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 163962906 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 57986864 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 18292736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 153201664 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 548976960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1073462376 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1179436641 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 601761107 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 38500574 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 76711670 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 143390717 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 95969087 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 31029760 </cn> <ci> z </ci> </apply> <cn type='integer'> -4072656 </cn> </apply> </apply> </apply> <cn type='integer'> -8145312 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["13", "8"]]], ",", FractionBox["47", "8"], ",", RowBox[List["-", FractionBox["21", "4"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "8145312"]], "+", RowBox[List["57986864", " ", "z"]], "-", RowBox[List["163962906", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["211539257", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["64843072", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["91185570", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["340298818", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["386144367", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["226898784", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["70312704", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["9146368", " ", SuperscriptBox["z", "10"]]], "+", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "4072656"]], "+", RowBox[List["31029760", " ", "z"]], "-", RowBox[List["95969087", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["143390717", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["76711670", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["38500574", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["601761107", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1179436641", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["1073462376", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["548976960", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["153201664", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["18292736", " ", SuperscriptBox["z", "11"]]]]], ")"]]]], SqrtBox[RowBox[List["1", "-", "z"]]]]]], ")"]]]], RowBox[List["16290624", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "9"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02