|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.bqzp.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[-(11/8), -(7/8), 21/4, z] ==
(16 2^(1/4) (4 (26 - 229 z + 964 z^2 - 2898 z^3 + 42090 z^4 + 13295 z^5) +
(-104 + 968 z - 4301 z^2 + 13412 z^3 + 32490 z^4 - 38980 z^5 - 3485 z^6)/
Sqrt[1 - z]))/(3299475 (1 + Sqrt[1 - z])^(1/4) z^4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "8"]]], ",", RowBox[List["-", FractionBox["7", "8"]]], ",", FractionBox["21", "4"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["16", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List["26", "-", RowBox[List["229", " ", "z"]], "+", RowBox[List["964", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2898", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["42090", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["13295", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["-", "104"]], "+", RowBox[List["968", " ", "z"]], "-", RowBox[List["4301", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["13412", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["32490", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["38980", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["3485", " ", SuperscriptBox["z", "6"]]]]], SqrtBox[RowBox[List["1", "-", "z"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["3299475", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", "4"]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 8 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 21 </mn> <mn> 4 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["7", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["21", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3299475 </mn> <mo> ⁢ </mo> <mroot> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 13295 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 42090 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2898 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 964 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 229 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 26 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 3485 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 38980 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 32490 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 13412 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4301 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 968 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 104 </mn> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 8 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 8 </cn> </apply> </list> <list> <cn type='rational'> 21 <sep /> 4 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3299475 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 13295 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 42090 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2898 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 964 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 229 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 26 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -3485 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 38980 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 32490 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 13412 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4301 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 968 </cn> <ci> z </ci> </apply> <cn type='integer'> -104 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "8"]]], ",", RowBox[List["-", FractionBox["7", "8"]]], ",", FractionBox["21", "4"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["16", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", RowBox[List["(", RowBox[List["26", "-", RowBox[List["229", " ", "z"]], "+", RowBox[List["964", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2898", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["42090", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["13295", " ", SuperscriptBox["z", "5"]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["-", "104"]], "+", RowBox[List["968", " ", "z"]], "-", RowBox[List["4301", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["13412", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["32490", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["38980", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["3485", " ", SuperscriptBox["z", "6"]]]]], SqrtBox[RowBox[List["1", "-", "z"]]]]]], ")"]]]], RowBox[List["3299475", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", "4"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|