| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.bro3.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[-(11/8), 5, -(3/8), z] == 
 (1/786432) (11 ((8 (-61251 + 151489 z - 133945 z^2 + 40635 z^3))/
     (-1 + z)^4 - 772065 ((-(8/33)) (3 + 11 z) + 
      z^(11/8) (-Log[1 - z^(1/8)] + I Log[1 - I z^(1/8)] - 
        I Log[1 + I z^(1/8)] + Log[1 + z^(1/8)] - 
        (-1)^(3/4) Log[1 - (-1)^(1/4) z^(1/8)] + (-1)^(3/4) 
         Log[1 + (-1)^(1/4) z^(1/8)] - (-1)^(1/4) 
         Log[1 - (-1)^(3/4) z^(1/8)] + (-1)^(1/4) 
         Log[1 + (-1)^(3/4) z^(1/8)])))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "8"]]], ",", "5", ",", RowBox[List["-", FractionBox["3", "8"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "786432"], RowBox[List["(", RowBox[List["11", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "61251"]], "+", RowBox[List["151489", " ", "z"]], "-", RowBox[List["133945", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["40635", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "4"]], "-", RowBox[List["772065", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["8", "33"]]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["11", " ", "z"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["11", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 11 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mn> 5 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["3", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 786432 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 11 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 40635 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 133945 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 151489 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 61251 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mfrac>  <mo> - </mo>  <mrow>  <mn> 772065 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 8 </mn>  <mn> 33 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 11 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 3 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 11 <sep /> 8 </cn>  </apply>  <cn type='integer'> 5 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 786432 </cn>  <apply>  <times />  <cn type='integer'> 11 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 40635 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 133945 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 151489 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -61251 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 772065 </cn>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='rational'> 8 <sep /> 33 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 11 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["11", "8"]]], ",", "5", ",", RowBox[List["-", FractionBox["3", "8"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["11", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["8", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "61251"]], "+", RowBox[List["151489", " ", "z"]], "-", RowBox[List["133945", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["40635", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "4"]], "-", RowBox[List["772065", " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "33"], " ", RowBox[List["(", RowBox[List["-", "8"]], ")"]], " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["11", " ", "z"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["11", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]], "]"]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["1", "+", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]]]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "786432"]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |