Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a<0 > For fixed z and a=-9/8, b>=a > For fixed z and a=-9/8, b=43/8





http://functions.wolfram.com/07.23.03.bswr.01









  


  










Input Form





Hypergeometric2F1[-(9/8), 43/8, -(13/4), z] == (652080 (1 + Sqrt[1 - z]) - 12540 (303 + 277 Sqrt[1 - z]) z + 9405 (815 + 639 Sqrt[1 - z]) z^2 - 74613 (36 + Sqrt[1 - z]) z^3 - 74613 (102 + 95 Sqrt[1 - z]) z^4 + 51 (445792 + 234503 Sqrt[1 - z]) z^5 - 17 (1550077 + 545036 Sqrt[1 - z]) z^6 + 2720 (6045 + 1328 Sqrt[1 - z]) z^7 - 13056 (419 + 44 Sqrt[1 - z]) z^8 + 765952 z^9)/ (652080 2^(1/4) (1 + Sqrt[1 - z])^(3/4) (1 - z)^(15/2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["9", "8"]]], ",", FractionBox["43", "8"], ",", RowBox[List["-", FractionBox["13", "4"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["652080", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]]]], "-", RowBox[List["12540", " ", RowBox[List["(", RowBox[List["303", "+", RowBox[List["277", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["9405", " ", RowBox[List["(", RowBox[List["815", "+", RowBox[List["639", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["74613", " ", RowBox[List["(", RowBox[List["36", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["74613", " ", RowBox[List["(", RowBox[List["102", "+", RowBox[List["95", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["51", " ", RowBox[List["(", RowBox[List["445792", "+", RowBox[List["234503", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["17", " ", RowBox[List["(", RowBox[List["1550077", "+", RowBox[List["545036", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2720", " ", RowBox[List["(", RowBox[List["6045", "+", RowBox[List["1328", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["13056", " ", RowBox[List["(", RowBox[List["419", "+", RowBox[List["44", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["765952", " ", SuperscriptBox["z", "9"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["652080", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["15", "/", "2"]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mn> 43 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 13 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;8&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;43&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;13&quot;, &quot;4&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 765952 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13056 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 44 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 419 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2720 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1328 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 6045 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 545036 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1550077 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 51 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 234503 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 445792 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 74613 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 95 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 102 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 74613 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 36 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9405 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 639 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 815 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 12540 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 277 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 303 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 652080 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 652080 </mn> <mo> &#8290; </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 8 </cn> </apply> <cn type='rational'> 43 <sep /> 8 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 13 <sep /> 4 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 765952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13056 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 419 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2720 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1328 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 6045 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 545036 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1550077 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 51 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 234503 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 445792 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 74613 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 95 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 102 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 74613 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 36 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 9405 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 639 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 815 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12540 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 277 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 303 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 652080 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 652080 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["9", "8"]]], ",", FractionBox["43", "8"], ",", RowBox[List["-", FractionBox["13", "4"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["652080", " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]]]], "-", RowBox[List["12540", " ", RowBox[List["(", RowBox[List["303", "+", RowBox[List["277", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["9405", " ", RowBox[List["(", RowBox[List["815", "+", RowBox[List["639", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["74613", " ", RowBox[List["(", RowBox[List["36", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["74613", " ", RowBox[List["(", RowBox[List["102", "+", RowBox[List["95", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["51", " ", RowBox[List["(", RowBox[List["445792", "+", RowBox[List["234503", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["17", " ", RowBox[List["(", RowBox[List["1550077", "+", RowBox[List["545036", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2720", " ", RowBox[List["(", RowBox[List["6045", "+", RowBox[List["1328", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["13056", " ", RowBox[List["(", RowBox[List["419", "+", RowBox[List["44", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["765952", " ", SuperscriptBox["z", "9"]]]]], RowBox[List["652080", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["15", "/", "2"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02