  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.23.03.btqw.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Hypergeometric2F1[-(7/8), 35/8, 1, z] == 
 (2 2^(1/4) ((2 + Sqrt[2 - 2 Sqrt[1 - z]]) Sqrt[1 - z] 
     (-25943 + 109875 z - 136188 z^2 + 53040 z^3) 
     EllipticE[2 - (2 Sqrt[2])/(Sqrt[2] + Sqrt[1 - Sqrt[1 - z]])] + 
    (-13558 + 25943 Sqrt[1 - z] - 5 (-29096 + 21975 Sqrt[1 - z]) z + 
      54 (-6603 + 2522 Sqrt[1 - z]) z^2 - 3120 (-106 + 17 Sqrt[1 - z]) z^3 - 
      106080 z^4) EllipticK[2 - (2 Sqrt[2])/(Sqrt[2] + 
         Sqrt[1 - Sqrt[1 - z]])]))/
  (39501 Pi Sqrt[Sqrt[2] + Sqrt[1 - Sqrt[1 - z]]] (-1 + z)^3) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["7", "8"]]], ",", FractionBox["35", "8"], ",", "1", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "+", SqrtBox[RowBox[List["2", "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]], ")"]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25943"]], "+", RowBox[List["109875", " ", "z"]], "-", RowBox[List["136188", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["53040", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "13558"]], "+", RowBox[List["25943", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "29096"]], "+", RowBox[List["21975", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["54", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6603"]], "+", RowBox[List["2522", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["3120", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "106"]], "+", RowBox[List["17", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["106080", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["39501", " ", "\[Pi]", " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "3"]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 7 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mfrac>  <mn> 35 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mn> 1 </mn>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["7", "8"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["35", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox["1", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mroot>  <mn> 2 </mn>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 53040 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 136188 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 109875 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> - </mo>  <mn> 25943 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> E </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </msqrt>  <mo> + </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 106080 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3120 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 17 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 106 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 54 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2522 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 6603 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 5 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 21975 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 29096 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 25943 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 13558 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> K </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </msqrt>  <mo> + </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 39501 </mn>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </msqrt>  <mo> + </mo>  <msqrt>  <mn> 2 </mn>  </msqrt>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 7 <sep /> 8 </cn>  </apply>  <cn type='rational'> 35 <sep /> 8 </cn>  </list>  <list>  <cn type='integer'> 1 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 53040 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 136188 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 109875 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -25943 </cn>  </apply>  <apply>  <ci> EllipticE </ci>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -106080 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3120 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 17 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -106 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 54 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2522 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -6603 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 5 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 21975 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -29096 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 25943 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -13558 </cn>  </apply>  <apply>  <ci> EllipticK </ci>  <apply>  <plus />  <cn type='integer'> 2 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 39501 </cn>  <pi />  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["7", "8"]]], ",", FractionBox["35", "8"], ",", "1", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["2", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["2", "+", SqrtBox[RowBox[List["2", "-", RowBox[List["2", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]], ")"]], " ", SqrtBox[RowBox[List["1", "-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "25943"]], "+", RowBox[List["109875", " ", "z"]], "-", RowBox[List["136188", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["53040", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "13558"]], "+", RowBox[List["25943", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]], "-", RowBox[List["5", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "29096"]], "+", RowBox[List["21975", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List["54", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "6603"]], "+", RowBox[List["2522", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["3120", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "106"]], "+", RowBox[List["17", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["106080", " ", SuperscriptBox["z", "4"]]]]], ")"]], " ", RowBox[List["EllipticK", "[", RowBox[List["2", "-", FractionBox[RowBox[List["2", " ", SqrtBox["2"]]], RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["39501", " ", "\[Pi]", " ", SqrtBox[RowBox[List[SqrtBox["2"], "+", SqrtBox[RowBox[List["1", "-", SqrtBox[RowBox[List["1", "-", "z"]]]]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "3"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |