|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.c5ky.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[15/8, 43/8, -(17/4), z] ==
-((-1209312 (1 + Sqrt[1 - z]) + 35568 (478 + 461 Sqrt[1 - z]) z -
342 (342567 + 319037 Sqrt[1 - z]) z^2 +
57 (9685996 + 8763517 Sqrt[1 - z]) z^3 -
399 (5752114 + 5157881 Sqrt[1 - z]) z^4 +
8778 (2441856 + 2331037 Sqrt[1 - z]) z^5 +
22 (1378740383 + 938844334 Sqrt[1 - z]) z^6 +
268345 (11740 + 673 Sqrt[1 - z]) z^7 - 268345 (978 + 71 Sqrt[1 - z])
z^8 + 195160 (137 + 6 Sqrt[1 - z]) z^9 - 1561280 z^10)/
(1209312 2^(1/4) (1 + Sqrt[1 - z])^(3/4) (1 - z)^(23/2)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["15", "8"], ",", FractionBox["43", "8"], ",", RowBox[List["-", FractionBox["17", "4"]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "1209312"]], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]]]], "+", RowBox[List["35568", " ", RowBox[List["(", RowBox[List["478", "+", RowBox[List["461", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "-", RowBox[List["342", " ", RowBox[List["(", RowBox[List["342567", "+", RowBox[List["319037", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["57", " ", RowBox[List["(", RowBox[List["9685996", "+", RowBox[List["8763517", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["399", " ", RowBox[List["(", RowBox[List["5752114", "+", RowBox[List["5157881", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["8778", " ", RowBox[List["(", RowBox[List["2441856", "+", RowBox[List["2331037", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["22", " ", RowBox[List["(", RowBox[List["1378740383", "+", RowBox[List["938844334", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268345", " ", RowBox[List["(", RowBox[List["11740", "+", RowBox[List["673", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["268345", " ", RowBox[List["(", RowBox[List["978", "+", RowBox[List["71", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["195160", " ", RowBox[List["(", RowBox[List["137", "+", RowBox[List["6", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1561280", " ", SuperscriptBox["z", "10"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["1209312", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["23", "/", "2"]]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 15 </mn> <mn> 8 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 43 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mn> 17 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["15", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["43", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["-", FractionBox["17", "4"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 1561280 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 195160 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 137 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 268345 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 71 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 978 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 268345 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 673 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 11740 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 938844334 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 1378740383 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8778 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2331037 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 2441856 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 399 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5157881 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 5752114 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 57 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8763517 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 9685996 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 342 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 319037 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 342567 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35568 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 461 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> <mo> + </mo> <mn> 478 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 1209312 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1209312 </mn> <mo> ⁢ </mo> <mroot> <mn> 2 </mn> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 15 <sep /> 8 </cn> <cn type='rational'> 43 <sep /> 8 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 17 <sep /> 4 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1561280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 195160 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 137 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 268345 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 71 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 978 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 268345 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 673 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 11740 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 938844334 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 1378740383 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8778 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2331037 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 2441856 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 399 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5157881 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 5752114 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 57 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 8763517 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 9685996 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 342 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 319037 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 342567 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 35568 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 461 </cn> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> 478 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1209312 </cn> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 1209312 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["15", "8"], ",", FractionBox["43", "8"], ",", RowBox[List["-", FractionBox["17", "4"]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "1209312"]], " ", RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]]]], "+", RowBox[List["35568", " ", RowBox[List["(", RowBox[List["478", "+", RowBox[List["461", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "-", RowBox[List["342", " ", RowBox[List["(", RowBox[List["342567", "+", RowBox[List["319037", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["57", " ", RowBox[List["(", RowBox[List["9685996", "+", RowBox[List["8763517", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["399", " ", RowBox[List["(", RowBox[List["5752114", "+", RowBox[List["5157881", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["8778", " ", RowBox[List["(", RowBox[List["2441856", "+", RowBox[List["2331037", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["22", " ", RowBox[List["(", RowBox[List["1378740383", "+", RowBox[List["938844334", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["268345", " ", RowBox[List["(", RowBox[List["11740", "+", RowBox[List["673", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["268345", " ", RowBox[List["(", RowBox[List["978", "+", RowBox[List["71", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["195160", " ", RowBox[List["(", RowBox[List["137", "+", RowBox[List["6", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["1561280", " ", SuperscriptBox["z", "10"]]]]], RowBox[List["1209312", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["23", "/", "2"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|