| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.23.03.c5xl.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1[2, 4, 11/8, z] == 
 (1/131072) ((16 (5917 + 2320 z - 320 z^2))/(-1 + z)^4 + 
   (2730 (-1)^(1/8) (-1 + (-1)^(3/4)) (5 + 24 z) 
     ArcTan[1 - (z^(1/8) Cos[Pi/8])/(1 - z)^(1/8), 
      -((z^(1/8) Sin[Pi/8])/(1 - z)^(1/8))])/((1 - z)^(37/8) z^(3/8)) + 
   (2730 (-1)^(1/8) (-1 + (-1)^(3/4)) (5 + 24 z) 
     ArcTan[1 + (z^(1/8) Cos[Pi/8])/(1 - z)^(1/8), 
      -((z^(1/8) Sin[Pi/8])/(1 - z)^(1/8))])/((1 - z)^(37/8) z^(3/8)) - 
   (2730 (-1)^(3/8) (-1 + (-1)^(1/4)) (5 + 24 z) 
     ArcTan[1 - (z^(1/8) Sin[Pi/8])/(1 - z)^(1/8), 
      -((z^(1/8) Cos[Pi/8])/(1 - z)^(1/8))])/((1 - z)^(37/8) z^(3/8)) - 
   (2730 (-1)^(3/8) (-1 + (-1)^(1/4)) (5 + 24 z) 
     ArcTan[1 + (z^(1/8) Sin[Pi/8])/(1 - z)^(1/8), 
      -((z^(1/8) Cos[Pi/8])/(1 - z)^(1/8))])/((1 - z)^(37/8) z^(3/8)) + 
   (1365 (-1)^(3/8) (-1 + (-1)^(1/4)) (5 + 24 z) 
     Log[1 + z^(1/4)/(1 - z)^(1/4) - (2 z^(1/8) Cos[Pi/8])/(1 - z)^(1/8)])/
    ((1 - z)^(37/8) z^(3/8)) - (1365 (-1)^(3/8) (-1 + (-1)^(1/4)) (5 + 24 z) 
     Log[1 + z^(1/4)/(1 - z)^(1/4) + (2 z^(1/8) Cos[Pi/8])/(1 - z)^(1/8)])/
    ((1 - z)^(37/8) z^(3/8)) - (1365 (-1)^(1/8) (-1 + (-1)^(3/4)) (5 + 24 z) 
     Log[1 + z^(1/4)/(1 - z)^(1/4) - (2 z^(1/8) Sin[Pi/8])/(1 - z)^(1/8)])/
    ((1 - z)^(37/8) z^(3/8)) + (1365 (-1)^(1/8) (-1 + (-1)^(3/4)) (5 + 24 z) 
     Log[1 + z^(1/4)/(1 - z)^(1/4) + (2 z^(1/8) Sin[Pi/8])/(1 - z)^(1/8)])/
    ((1 - z)^(37/8) z^(3/8))) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["2", ",", "4", ",", FractionBox["11", "8"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "131072"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["16", " ", RowBox[List["(", RowBox[List["5917", "+", RowBox[List["2320", " ", "z"]], "-", RowBox[List["320", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "4"]], "+", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "+", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "+", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "+", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 11 </mn>  <mn> 8 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["11", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 131072 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 320 </mn>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2320 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5917 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2730 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2730 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2730 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2730 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> tan </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 1365 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 1365 </mn>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 1365 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mfrac>  <mo> - </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 1365 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 8 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> + </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 4 </mn>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 24 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 5 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mfrac>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 4 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mfrac>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> sin </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mi> π </mi>  <mn> 8 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 8 </mn>  </mroot>  </mrow>  <mroot>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mn> 8 </mn>  </mroot>  </mfrac>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 8 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 2 </cn>  <cn type='integer'> 4 </cn>  </list>  <list>  <cn type='rational'> 11 <sep /> 8 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 131072 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -320 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2320 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5917 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2730 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <cos />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2730 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <apply>  <times />  <apply>  <cos />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2730 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <sin />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <cos />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2730 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <arctan />  <apply>  <plus />  <apply>  <times />  <apply>  <sin />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <cos />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1365 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <cos />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1365 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <cos />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 1365 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <sin />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1365 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <plus />  <cn type='integer'> -1 </cn>  <apply>  <power />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 24 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 5 </cn>  </apply>  <apply>  <ln />  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <sin />  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 8 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <apply>  <power />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 8 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 37 <sep /> 8 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 3 <sep /> 8 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["2", ",", "4", ",", FractionBox["11", "8"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[FractionBox[RowBox[List["16", " ", RowBox[List["(", RowBox[List["5917", "+", RowBox[List["2320", " ", "z"]], "-", RowBox[List["320", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "4"]], "+", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "+", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["2730", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "+", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "-", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]], "+", FractionBox[RowBox[List["1365", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["37", "/", "8"]]], " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]]]]]]], "131072"]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |