|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.03.c5xx.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[2, 4, 35/8, z] == (1/(131072 (-1 + z) z^(27/8)))
(171 (16 z^(3/8) (-209 + 112 z + 64 z^2) -
(66 (-1)^(1/8) (-1 + (-1)^(3/4)) (-19 + 24 z)
ArcTan[1 - (z^(1/8) Cos[Pi/8])/(1 - z)^(1/8),
-((z^(1/8) Sin[Pi/8])/(1 - z)^(1/8))])/(1 - z)^(5/8) -
(66 (-1)^(1/8) (-1 + (-1)^(3/4)) (-19 + 24 z)
ArcTan[1 + (z^(1/8) Cos[Pi/8])/(1 - z)^(1/8),
-((z^(1/8) Sin[Pi/8])/(1 - z)^(1/8))])/(1 - z)^(5/8) +
(66 (-1)^(3/8) (-1 + (-1)^(1/4)) (-19 + 24 z)
ArcTan[1 - (z^(1/8) Sin[Pi/8])/(1 - z)^(1/8),
-((z^(1/8) Cos[Pi/8])/(1 - z)^(1/8))])/(1 - z)^(5/8) +
(66 (-1)^(3/8) (-1 + (-1)^(1/4)) (-19 + 24 z)
ArcTan[1 + (z^(1/8) Sin[Pi/8])/(1 - z)^(1/8),
-((z^(1/8) Cos[Pi/8])/(1 - z)^(1/8))])/(1 - z)^(5/8) -
(33 (-1)^(3/8) (-1 + (-1)^(1/4)) (-19 + 24 z)
Log[1 + z^(1/4)/(1 - z)^(1/4) - (2 z^(1/8) Cos[Pi/8])/(1 - z)^(1/8)])/
(1 - z)^(5/8) + (33 (-1)^(3/8) (-1 + (-1)^(1/4)) (-19 + 24 z)
Log[1 + z^(1/4)/(1 - z)^(1/4) + (2 z^(1/8) Cos[Pi/8])/(1 - z)^(1/8)])/
(1 - z)^(5/8) + (33 (-1)^(1/8) (-1 + (-1)^(3/4)) (-19 + 24 z)
Log[1 + z^(1/4)/(1 - z)^(1/4) - (2 z^(1/8) Sin[Pi/8])/(1 - z)^(1/8)])/
(1 - z)^(5/8) - (33 (-1)^(1/8) (-1 + (-1)^(3/4)) (-19 + 24 z)
Log[1 + z^(1/4)/(1 - z)^(1/4) + (2 z^(1/8) Sin[Pi/8])/(1 - z)^(1/8)])/
(1 - z)^(5/8)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["2", ",", "4", ",", FractionBox["35", "8"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["131072", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", SuperscriptBox["z", RowBox[List["27", "/", "8"]]]]]], RowBox[List["(", RowBox[List["171", " ", RowBox[List["(", RowBox[List[RowBox[List["16", " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "209"]], "+", RowBox[List["112", " ", "z"]], "+", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "-", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "-", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "-", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "-", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]]]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 35 </mn> <mn> 8 </mn> </mfrac> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["35", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 131072 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 171 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 112 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 209 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 66 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 66 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 66 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 66 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 33 </mn> <mo> ⁢ </mo> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 8 </mn> </mroot> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 19 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 4 </mn> </mroot> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mi> π </mi> <mn> 8 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 8 </mn> </mroot> </mrow> <mroot> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 8 </mn> </mroot> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 2 </cn> <cn type='integer'> 4 </cn> </list> <list> <cn type='rational'> 35 <sep /> 8 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 131072 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 8 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 171 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 112 </cn> <ci> z </ci> </apply> <cn type='integer'> -209 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 66 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 66 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 66 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <arctan /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 66 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <arctan /> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cos /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 33 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <plus /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <ci> z </ci> </apply> <cn type='integer'> -19 </cn> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <sin /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["2", ",", "4", ",", FractionBox["35", "8"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["171", " ", RowBox[List["(", RowBox[List[RowBox[List["16", " ", SuperscriptBox["z", RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "209"]], "+", RowBox[List["112", " ", "z"]], "+", RowBox[List["64", " ", SuperscriptBox["z", "2"]]]]], ")"]]]], "-", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "-", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["66", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["ArcTan", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "-", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Cos", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "+", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]], "-", FractionBox[RowBox[List["33", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "8"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "19"]], "+", RowBox[List["24", " ", "z"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "+", FractionBox[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "4"]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["z", RowBox[List["1", "/", "8"]]], " ", RowBox[List["Sin", "[", FractionBox["\[Pi]", "8"], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["1", "/", "8"]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["5", "/", "8"]]]]]], ")"]]]], RowBox[List["131072", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", SuperscriptBox["z", RowBox[List["27", "/", "8"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|