Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Specific values > For rational parameters with denominators 8 and fixed z and a>0 > For fixed z and a=2, b>=a > For fixed z and a=2, b=47/8





http://functions.wolfram.com/07.23.03.c647.01









  


  










Input Form





Hypergeometric2F1[2, 47/8, 5, z] == (256 (128 - 128/(1 - z)^(7/8) + (-96 + 208/(1 - z)^(7/8)) z - 77 z^2 - 70 z^3 + 115 z^4))/(46345 (-1 + z)^2 z^4)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["2", ",", FractionBox["47", "8"], ",", "5", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List["256", " ", RowBox[List["(", RowBox[List["128", "-", FractionBox["128", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["7", "/", "8"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "96"]], "+", FractionBox["208", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["7", "/", "8"]]]]]], ")"]], " ", "z"]], "-", RowBox[List["77", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["70", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["115", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["46345", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], " ", SuperscriptBox["z", "4"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mfrac> <mn> 47 </mn> <mn> 8 </mn> </mfrac> </mrow> <mo> ; </mo> <mn> 5 </mn> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;47&quot;, &quot;8&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;5&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mfrac> <mrow> <mn> 256 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 115 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 70 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 77 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 208 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mn> 96 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mfrac> <mn> 128 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 7 </mn> <mo> / </mo> <mn> 8 </mn> </mrow> </msup> </mfrac> <mo> + </mo> <mn> 128 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 46345 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 2 </cn> <cn type='rational'> 47 <sep /> 8 </cn> </list> <list> <cn type='integer'> 5 </cn> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 256 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 115 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 70 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 77 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 208 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 7 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -96 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 128 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='rational'> 7 <sep /> 8 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 128 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 46345 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["2", ",", FractionBox["47", "8"], ",", "5", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["256", " ", RowBox[List["(", RowBox[List["128", "-", FractionBox["128", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["7", "/", "8"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "96"]], "+", FractionBox["208", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["7", "/", "8"]]]]]], ")"]], " ", "z"]], "-", RowBox[List["77", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["70", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["115", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["46345", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"], " ", SuperscriptBox["z", "4"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02