  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.23.03.cd04.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    Hypergeometric2F1[37/8, 41/8, 17/4, z] == 
 (8 2^(1/4) (12 (-1 + Sqrt[1 - z]) + (79 - 73 Sqrt[1 - z]) z + 
    (-257 + 222 Sqrt[1 - z]) z^2 + (2885 + 607 Sqrt[1 - z]) z^3 + 377 z^4))/
  (27115 (1 + Sqrt[1 - z])^(1/4) (1 - z)^(11/2) z^3) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["37", "8"], ",", FractionBox["41", "8"], ",", FractionBox["17", "4"], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["8", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["79", "-", RowBox[List["73", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "257"]], "+", RowBox[List["222", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["2885", "+", RowBox[List["607", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["377", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["27115", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["11", "/", "2"]]], " ", SuperscriptBox["z", "3"]]], ")"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 37 </mn>  <mn> 8 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 41 </mn>  <mn> 8 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mn> 17 </mn>  <mn> 4 </mn>  </mfrac>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["37", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["41", "8"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[TagBox[FractionBox["17", "4"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 8 </mn>  <mo> ⁢ </mo>  <mroot>  <mn> 2 </mn>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 377 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 607 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> + </mo>  <mn> 2885 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 222 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  <mo> - </mo>  <mn> 257 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 79 </mn>  <mo> - </mo>  <mrow>  <mn> 73 </mn>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 27115 </mn>  <mo> ⁢ </mo>  <mroot>  <mrow>  <msqrt>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  </msqrt>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mn> 4 </mn>  </mroot>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='rational'> 37 <sep /> 8 </cn>  <cn type='rational'> 41 <sep /> 8 </cn>  </list>  <list>  <cn type='rational'> 17 <sep /> 4 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 8 </cn>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 377 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 607 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2885 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 222 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -257 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <cn type='integer'> 79 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 73 </cn>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 27115 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["37", "8"], ",", FractionBox["41", "8"], ",", FractionBox["17", "4"], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["8", " ", SuperscriptBox["2", RowBox[List["1", "/", "4"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["12", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["79", "-", RowBox[List["73", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "257"]], "+", RowBox[List["222", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["2885", "+", RowBox[List["607", " ", SqrtBox[RowBox[List["1", "-", "z"]]]]]]], ")"]], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["377", " ", SuperscriptBox["z", "4"]]]]], ")"]]]], RowBox[List["27115", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SqrtBox[RowBox[List["1", "-", "z"]]]]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["11", "/", "2"]]], " ", SuperscriptBox["z", "3"]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |