Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Hypergeometric2F1






Mathematica Notation

Traditional Notation









Hypergeometric Functions > Hypergeometric2F1[a,b,c,z] > Series representations > Generalized power series > Expansions at z==1 > For the function itself > Logarithmic cases





http://functions.wolfram.com/07.23.06.0016.01









  


  










Input Form





Hypergeometric2F1[a, b, a + b + n, z] == (-(Gamma[a + b + n]/(Gamma[a] Gamma[b] n!))) (z - 1)^n Log[1 - z] Hypergeometric2F1[a + n, b + n, 1 + n, 1 - z] + (((n - 1)! Gamma[a + b + n])/(Gamma[a + n] Gamma[b + n])) Sum[((Pochhammer[a, k] Pochhammer[b, k])/(k! Pochhammer[1 - n, k])) (1 - z)^k, {k, 0, n - 1}] + (Gamma[a + b + n]/(Gamma[a] Gamma[b])) (z - 1)^n Sum[((Pochhammer[a + n, k] Pochhammer[b + n, k])/(k! (n + k)!)) (PolyGamma[k + 1] + PolyGamma[k + n + 1] - PolyGamma[a + n + k] - PolyGamma[b + n + k]) (1 - z)^k, {k, 0, Infinity}] /; Element[n, Integers] && n > 0 && Abs[1 - z] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List["a", "+", "b", "+", "n"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["n", "!"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "n"], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["a", "+", "n"]], ",", RowBox[List["b", "+", "n"]], ",", RowBox[List["1", "+", "n"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n"]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "n"]], "]"]], RowBox[List["Gamma", "[", RowBox[List["b", "+", "n"]], "]"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List["b", ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "n"]], ",", "k"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]]]]]], "+", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n"]], "]"]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List["Gamma", "[", "b", "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "n"]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b", "+", "n"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "k"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "n", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "n", "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["b", "+", "n", "+", "k"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["1", "-", "z"]], "]"]], "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;a&quot;, Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;b&quot;, Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;b&quot;, &quot;+&quot;, &quot;n&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;a&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;b&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;n&quot;]], Hypergeometric2F1, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;n&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;z&quot;]], Hypergeometric2F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;n&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> </apply> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <ci> b </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> b </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <ci> b </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> b </ci> <ci> n </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> b </ci> <ci> k </ci> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", "b_", ",", RowBox[List["a_", "+", "b_", "+", "n_"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "n"], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["a", "+", "n"]], ",", RowBox[List["b", "+", "n"]], ",", RowBox[List["1", "+", "n"]], ",", RowBox[List["1", "-", "z"]]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["n", "!"]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List["b", ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "n"]], ",", "k"]], "]"]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["b", "+", "n"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "+", "b", "+", "n"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["a", "+", "n"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b", "+", "n"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "n", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["a", "+", "n", "+", "k"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["b", "+", "n", "+", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "k"]], ")"]], "!"]]]]]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", "b", "]"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["1", "-", "z"]], "]"]], "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29