|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.06.0018.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[a, b, c, z] ==
Gamma[c] HypergeometricPFQRegularizedAsymptotics[{a, b}, {c},
{z, ComplexInfinity, Infinity}] /; !IntervalMemberQ[Interval[{0, 1}], z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], RowBox[List["HypergeometricPFQRegularizedAsymptotics", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]], ",", RowBox[List["{", "c", "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]], "/;", RowBox[List["Not", "[", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["0", ",", "1"]], "}"]], "]"]], ",", "z"]], "]"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> 𝒜 </mi> <mover> <mi> F </mi> <mo> ~ </mo> </mover> </msub> <mo> ( </mo> <mrow> <mtable> <mtr> <mtd> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi> c </mi> <mo> ; </mo> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mrow> <mo> { </mo> <mrow> <mi> z </mi> <mo> , </mo> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mi> ∞ </mi> </mrow> <mo> } </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> z </mi> <mo> ∉ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms>  </ms> <apply> <ci> FormBox </ci> <ms> 2 </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <apply> <ci> FormBox </ci> <ms> 1 </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> a </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> b </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <ms> c </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <ci> Hypergeometric2F1 </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ci> Hypergeometric2F1 </ci> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <ms> c </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> 𝒜 </ms> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> b </ms> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> c </ms> <ms> ; </ms> </list> </apply> </list> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> , </ms> <apply> <ci> OverscriptBox </ci> <ms> ∞ </ms> <ms> ~ </ms> </apply> <ms> , </ms> <ms> ∞ </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> <ms> ] </ms> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> ∉ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> , </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], " ", RowBox[List["HypergeometricPFQRegularizedAsymptotics", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]], ",", RowBox[List["{", "c", "}"]], ",", RowBox[List["{", RowBox[List["z", ",", "ComplexInfinity", ",", "\[Infinity]"]], "}"]]]], "]"]]]], "/;", RowBox[List["!", RowBox[List["IntervalMemberQ", "[", RowBox[List[RowBox[List["Interval", "[", RowBox[List["{", RowBox[List["0", ",", "1"]], "}"]], "]"]], ",", "z"]], "]"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|