|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.06.0064.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[a, b, c, z] \[Proportional]
Piecewise[{{((-1)^(a - c) (b - c)! Gamma[c])/((-z)^b (Gamma[a] (b - a)!)),
Element[b - a, Integers] && b - a >= 0 && Element[a - c, Integers] &&
a - c >= 0}, {(Gamma[c] Log[-z])/((-z)^a (Gamma[a] (c - a - 1)!)),
b == a && !(Element[a - c, Integers] && a - c >= 0)},
{((-1)^(b - c) (a - c)! Gamma[c])/((-z)^a (Gamma[b] (a - b)!)),
Element[a - b, Integers] && a - b >= 0 && Element[b - c, Integers] &&
b - c >= 0}, {(Gamma[b - a] Gamma[c])/((-z)^a (Gamma[b] Gamma[c - a])),
Re[b - a] > 0 || (Element[-c, Integers] && -c >= 0 &&
Element[-a, Integers] && -a >= 0 && c - a <= 0)},
{(Gamma[a - b] Gamma[c])/((-z)^b (Gamma[a] Gamma[c - b])),
Re[b - a] > 0 || (Element[-c, Integers] && -c >= 0 &&
Element[-b, Integers] && -b >= 0 && c - b <= 0)},
{ComplexInfinity, Element[-c, Integers] && -c >= 0 &&
((Element[-a, Integers] && -a >= 0 && c - a > 0) ||
(Element[-b, Integers] && -b >= 0 && c - b > 0))}},
(Gamma[b - a] Gamma[c])/((-z)^a (Gamma[b] Gamma[c - a])) +
(Gamma[a - b] Gamma[c])/((-z)^b (Gamma[a] Gamma[c - b]))] /;
(Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Proportional]", RowBox[List["Piecewise", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "c"]]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "!"]], RowBox[List["Gamma", "[", "c", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List[RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]], "!"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["b", "-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["b", "-", "a"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], RowBox[List[RowBox[List["(", RowBox[List["c", "-", "a", "-", "1"]], ")"]], "!"]]]]], ",", RowBox[List[RowBox[List["b", "\[Equal]", "a"]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]], "]"]]]]]], "}"]], ",", "\[IndentingNewLine]", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["b", "-", "c"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "!"]], RowBox[List["Gamma", "[", "c", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]], " "]], RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "!"]]]]]]], ",", RowBox[List[RowBox[List[RowBox[List["a", "-", "b"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["a", "-", "b"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["b", "-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["b", "-", "c"]], "\[GreaterEqual]", "0"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], ">", "0"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "a"]], "\[LessEqual]", "0"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]], ",", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], ">", "0"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "b"]], "\[LessEqual]", "0"]]]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List["ComplexInfinity", ",", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "a"]], ">", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["c", "-", "b"]], ">", "0"]]]], ")"]]]], ")"]]]]]], "}"]]]], "}"]], ",", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]]]]]], "]"]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mo>  </mo> <mtable> <mtr> <mtd> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mi> b </mi> <mo>  </mo> <mi> a </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ∉ </mo> <mi> ℕ </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ≥ </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mtd> <mtd> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ≥ </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> </mtd> <mtd> <mrow> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> c </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> <mtd> <semantics> <mi> True </mi> <annotation encoding='Mathematica'> TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]] </annotation> </semantics> </mtd> </mtr> </mtable> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <piecewise> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> ℕ </ci> </apply> <apply> <in /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> ℕ </ci> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <eq /> <ci> b </ci> <ci> a </ci> </apply> <apply> <notin /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> ℕ </ci> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> ℕ </ci> </apply> <apply> <in /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> ℕ </ci> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <or /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> ℕ </ci> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> ℕ </ci> </apply> <apply> <geq /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <piece> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <or /> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> ℕ </ci> </apply> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> ℕ </ci> </apply> <apply> <geq /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </piece> <piece> <apply> <ci> OverTilde </ci> <infinity /> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> ℕ </ci> </apply> <apply> <or /> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> ℕ </ci> </apply> <apply> <gt /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> ℕ </ci> </apply> <apply> <gt /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </piece> <otherwise> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> c </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </otherwise> </piecewise> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[Piecewise]", GridBox[List[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["a", "-", "c"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", "c", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]], "!"]]]]], RowBox[List[RowBox[List[RowBox[List["b", "-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["b", "-", "a"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "c", "]"]], " ", RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["c", "-", "a", "-", "1"]], ")"]], "!"]]]]], RowBox[List[RowBox[List["b", "\[Equal]", "a"]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["a", "-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "-", "c"]], "\[GreaterEqual]", "0"]]]], ")"]]]]]]], List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["b", "-", "c"]]], " ", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "c"]], ")"]], "!"]], " ", RowBox[List["Gamma", "[", "c", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], "!"]]]]], RowBox[List[RowBox[List[RowBox[List["a", "-", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["a", "-", "b"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["b", "-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["b", "-", "c"]], "\[GreaterEqual]", "0"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], ">", "0"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "a"]], "\[LessEqual]", "0"]]]], ")"]]]]], List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]], RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], ">", "0"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "b"]], "\[LessEqual]", "0"]]]], ")"]]]]], List["ComplexInfinity", RowBox[List[RowBox[List[RowBox[List["-", "c"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "c"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "a"]], ">", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "b"]], "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["c", "-", "b"]], ">", "0"]]]], ")"]]]], ")"]]]]], List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["b", "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "a"]]]]], RowBox[List[RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "a"]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["a", "-", "b"]], "]"]], " ", RowBox[List["Gamma", "[", "c", "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "b"]]]]], RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["c", "-", "b"]], "]"]]]]]]], TagBox["True", "PiecewiseDefault", Rule[AutoDelete, False], Rule[DeletionWarning, True]]]], Rule[ColumnAlignments, List[Left]], Rule[ColumnSpacings, 1.2`], Rule[ColumnWidths, Automatic]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|