|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.13.0039.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Wronskian[z^s Hypergeometric2F1Regularized[a, b, c, d z^r],
z^s MeijerG[{{1 - a, 1 - b}, {}}, {{0, 1 - c}, {}}, d z^r], z] ==
((-d) r z^(-1 + r + 2 s) (1 - d z^r)^(-1 - a - b + c) Gamma[1 + a - c]
Gamma[1 + b - c])/(d z^r)^c
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["z", "s"], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", "b", ",", "c", ",", RowBox[List["d", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["z", "s"], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a"]], ",", RowBox[List["1", "-", "b"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", "c"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["d", " ", SuperscriptBox["z", "r"]]]]], "]"]]]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", "d"]], " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["-", "c"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["d", " ", SuperscriptBox["z", "r"]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "+", "c"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "c"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "b", "-", "c"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox[OverscriptBox["F", "~"], "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["c", Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[RowBox[List["d", " ", SuperscriptBox["z", "r"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mi> s </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> c </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["2", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["d", " ", SuperscriptBox["z", "r"]]], MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["1", "-", "a"]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "b"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "c"]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> ⁢ </mo> <mi> r </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mi> r </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> Hypergeometric2F1Regularized </ci> <ci> a </ci> <ci> b </ci> <ci> c </ci> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> s </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </list> <list /> </list> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> r </ci> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> r </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["z_", "s_"], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", RowBox[List["d_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["z_", "s_"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "a_"]], ",", RowBox[List["1", "-", "b_"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["1", "-", "c_"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["d_", " ", SuperscriptBox["z_", "r_"]]]]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", "d"]], " ", "r", " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "1"]], "+", "r", "+", RowBox[List["2", " ", "s"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List["-", "c"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["d", " ", SuperscriptBox["z", "r"]]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "a", "-", "b", "+", "c"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "a", "-", "c"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "b", "-", "c"]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|