|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.17.0146.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric2F1[a, b, c, z] ==
(((n - c + 1) (n - c) (1 - z))/((n + a - c) (n + b - c) z))
Subscript[\[ScriptCapitalC], n - 1][a, b, c, z]
Hypergeometric2F1[a, b, c - n - 1, z] +
Subscript[\[ScriptCapitalC], n][a, b, c, z] Hypergeometric2F1[a, b, c - n,
z] /; Subscript[\[ScriptCapitalC], 0][a, b, c, z] == 1 &&
Subscript[\[ScriptCapitalC], 1][a, b, c, z] ==
((c - 1) (2 - c - (3 + a + b - 2 c) z))/((1 + a - c) (1 + b - c) z) &&
Subscript[\[ScriptCapitalC], n][a, b, c, z] ==
(((-n + c) (n + 1 - c - (3 + a + b + 2 (n - c - 1)) z))/
((n + a - c) (n + b - c) z)) Subscript[\[ScriptCapitalC], n - 1][a, b,
c, z] + (((n - c) (n - c - 1) (1 - z))/((n - 1 + a - c) (n - 1 + b - c)
z)) Subscript[\[ScriptCapitalC], n - 2][a, b, c, z] &&
Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "c", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "b", "-", "c"]], ")"]], " ", "z"]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List["c", "-", "n", "-", "1"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List["c", "-", "n"]], ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", "1"]], "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["2", "-", "c", "-", RowBox[List[RowBox[List["(", RowBox[List["3", "+", "a", "+", "b", "-", RowBox[List["2", " ", "c"]]]], ")"]], " ", "z"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "b", "-", "c"]], ")"]], " ", "z"]]]]], " ", "\[And]", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "1", "-", "c", "-", RowBox[List[RowBox[List["(", RowBox[List["3", "+", "a", "+", "b", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "-", "c", "-", "1"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "b", "-", "c"]], ")"]], " ", "z"]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "c", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "+", "a", "-", "c"]], ")"]], RowBox[List["(", RowBox[List["n", "-", "1", "+", "b", "-", "c"]], ")"]], " ", "z"]]], RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "2"]]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]]]]]]]], "\[And]", RowBox[List["Element", "[", RowBox[List["n", ",", "Integers"]], "]"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> c </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <mi> 𝒞 </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["c", "-", "n", "-", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <msub> <mi> 𝒞 </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["c", "-", "n"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <mrow> <msub> <mi> 𝒞 </mi> <mn> 0 </mn> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msub> <mi> 𝒞 </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msub> <mi> 𝒞 </mi> <mi> n </mi> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <mi> 𝒞 </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <mi> 𝒞 </mi> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <ci> n </ci> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <ci> b </ci> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <cn type='integer'> 0 </cn> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <ci> n </ci> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> n </ci> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <ci> n </ci> </apply> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> 𝒞 </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> a </ci> <ci> b </ci> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "c", "+", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List["c", "-", "n", "-", "1"]], ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "b", "-", "c"]], ")"]], " ", "z"]]], "+", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", "b", ",", RowBox[List["c", "-", "n"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "0"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", "1"]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "1"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["c", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "c", "-", RowBox[List[RowBox[List["(", RowBox[List["3", "+", "a", "+", "b", "-", RowBox[List["2", " ", "c"]]]], ")"]], " ", "z"]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", "b", "-", "c"]], ")"]], " ", "z"]]]]], "&&", RowBox[List[RowBox[List[SubscriptBox["\[ScriptCapitalC]", "n"], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], "+", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "1", "-", "c", "-", RowBox[List[RowBox[List["(", RowBox[List["3", "+", "a", "+", "b", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["n", "-", "c", "-", "1"]], ")"]]]]]], ")"]], " ", "z"]]]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "1"]]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "+", "b", "-", "c"]], ")"]], " ", "z"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "c", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[ScriptCapitalC]", RowBox[List["n", "-", "2"]]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1", "+", "a", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["n", "-", "1", "+", "b", "-", "c"]], ")"]], " ", "z"]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|