|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.20.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[0, 0, 1, 0][Hypergeometric2F1][a, b, c, z] ==
(-((z a b)/c^2)) HypergeometricPFQ[{{1 + a, 1 + b}, {1}, {1, c}},
{{2, 1 + c}, {}, {1 + c}}, z, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["0", ",", "0", ",", "1", ",", "0"]], "]"]], "[", "Hypergeometric2F1", "]"]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["z", " ", "a", " ", "b"]], RowBox[List[SuperscriptBox["c", "2"], " "]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "b"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "c"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", "c"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", "c"]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mn> 2 </mn> </msub> <msubsup> <mi> F </mi> <mn> 1 </mn> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> c </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Hypergeometric2F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mrow> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <mn> 2 </mn> </msub> <msubsup> <mi> F </mi> <mn> 1 </mn> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> c </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Hypergeometric2F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> z </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mtext> </mtext> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> c </mi> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mrow> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mi> c </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Hypergeometric2F1", TagBox[RowBox[List["(", RowBox[List["0", ",", "0", ",", "1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["z", " ", "a", " ", "b"]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", "a"]], ",", RowBox[List["1", "+", "b"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", "c"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", "c"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", "c"]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]], SuperscriptBox["c", "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|