|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.23.26.0052.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
((8 + 9 z) Hypergeometric2F1[a, 1/3 + a, 3/2, (8 + 9 z)^2/(4 + 3 z)^3])/
(4 + 3 z)^(3 a) == ((3^(2 - 3 a) Sqrt[Pi])/(2 Gamma[4/3 - a]
Gamma[-1 + 3 a])) MeijerG[{{2 - 3 a}, {5/2 - 3 a}},
{{7/3 - 4 a, 0}, {}}, z] /; Abs[z] > 1 || Re[z] >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["3", " ", "z"]]]], ")"]], RowBox[List[RowBox[List["-", "3"]], " ", "a"]]], " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List[FractionBox["1", "3"], "+", "a"]], ",", FractionBox["3", "2"], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z"]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["3", " ", "z"]]]], ")"]], "3"]]]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["3", RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]]], " ", SqrtBox["\[Pi]"], " "]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", "a"]]]], "]"]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], "-", RowBox[List["3", " ", "a"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["7", "3"], "-", RowBox[List["4", " ", "a"]]]], ",", "0"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]], "\[Or]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 9 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "3"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[FractionBox["3", "2"], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["9", " ", "z"]], "+", "8"]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "z"]], "+", "4"]], ")"]], "3"]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mfrac> <mn> 7 </mn> <mn> 3 </mn> </mfrac> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["2", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox["5", "2"], "-", RowBox[List["3", " ", "a"]]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[RowBox[List[FractionBox["7", "3"], "-", RowBox[List["4", " ", "a"]]]], MeijerG, Rule[Editable, True]], ",", TagBox["0", MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∨ </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ≥ </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -3 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <ci> Hypergeometric2F1 </ci> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 9 </cn> <ci> z </ci> </apply> <cn type='integer'> 8 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> </list> <list> <apply> <plus /> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> </list> </list> <list> <list> <apply> <plus /> <cn type='rational'> 7 <sep /> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </list> <list /> </list> <ci> z </ci> </apply> </apply> </apply> <apply> <or /> <apply> <gt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <geq /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["3", " ", "z_"]]]], ")"]], RowBox[List[RowBox[List["-", "3"]], " ", "a_"]]], " ", RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z_"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List[FractionBox["1", "3"], "+", "a_"]], ",", FractionBox["3", "2"], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["8", "+", RowBox[List["9", " ", "z_"]]]], ")"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", RowBox[List["3", " ", "z_"]]]], ")"]], "3"]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]]], " ", SqrtBox["\[Pi]"]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", "-", RowBox[List["3", " ", "a"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["5", "2"], "-", RowBox[List["3", " ", "a"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["7", "3"], "-", RowBox[List["4", " ", "a"]]]], ",", "0"]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["4", "3"], "-", "a"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", "a"]]]], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], ">", "1"]], "||", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|