Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-11/2, a2>=-11/2 > For fixed z and a1=-11/2, a2=1, b1>=-11/2 > For fixed z and a1=-11/2, a2=1, b1=5





http://functions.wolfram.com/07.25.03.1054.01









  


  










Input Form





HypergeometricPFQ[{-(11/2), 1}, {5, 11/2}, z] == (36 (-210 + 1330 z - 2261 z^2 + 1615 z^3))/(20995 z^4) + (1/(10319462400 z^4)) (E^z (3061162125 - 13718801250 z + 17211625200 z^2 - 9337442400 z^3 + 2606604000 z^4 - 405961920 z^5 + 36314880 z^6 - 1836544 z^7 + 48384 z^8 - 512 z^9)) + (1/(20638924800 z^(9/2))) (Sqrt[Pi] (654729075 - 13094581500 z + 39283744500 z^2 - 41902660800 z^3 + 20951330400 z^4 - 5587021440 z^5 + 846518400 z^6 - 74419200 z^7 + 3720960 z^8 - 97280 z^9 + 1024 z^10) Erfi[Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["5", ",", FractionBox["11", "2"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "210"]], "+", RowBox[List["1330", " ", "z"]], "-", RowBox[List["2261", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1615", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["20995", " ", SuperscriptBox["z", "4"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["10319462400", " ", SuperscriptBox["z", "4"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["3061162125", "-", RowBox[List["13718801250", " ", "z"]], "+", RowBox[List["17211625200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["9337442400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2606604000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["405961920", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["36314880", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1836544", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["48384", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["512", " ", SuperscriptBox["z", "9"]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["20638924800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]], RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["654729075", "-", RowBox[List["13094581500", " ", "z"]], "+", RowBox[List["39283744500", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["41902660800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["20951330400", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5587021440", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["846518400", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["74419200", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3720960", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["97280", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 5 </mn> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[&quot;5&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;11&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mn> 36 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1615 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2261 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1330 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 210 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 20995 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 10319462400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 512 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 48384 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1836544 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 36314880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 405961920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2606604000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9337442400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17211625200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13718801250 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3061162125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 20638924800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1024 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 97280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3720960 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 74419200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 846518400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 5587021440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20951330400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 41902660800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 39283744500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13094581500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 654729075 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </list> <list> <cn type='integer'> 5 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1615 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2261 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1330 </cn> <ci> z </ci> </apply> <cn type='integer'> -210 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 20995 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 10319462400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 48384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1836544 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 36314880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 405961920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2606604000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9337442400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 17211625200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13718801250 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3061162125 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 20638924800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 97280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3720960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 74419200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 846518400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5587021440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 20951330400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 41902660800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 39283744500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13094581500 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 654729075 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "1"]], "}"]], ",", RowBox[List["{", RowBox[List["5", ",", FractionBox["11", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["36", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "210"]], "+", RowBox[List["1330", " ", "z"]], "-", RowBox[List["2261", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1615", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["20995", " ", SuperscriptBox["z", "4"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["3061162125", "-", RowBox[List["13718801250", " ", "z"]], "+", RowBox[List["17211625200", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["9337442400", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["2606604000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["405961920", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["36314880", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["1836544", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["48384", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["512", " ", SuperscriptBox["z", "9"]]]]], ")"]]]], RowBox[List["10319462400", " ", SuperscriptBox["z", "4"]]]], "+", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["654729075", "-", RowBox[List["13094581500", " ", "z"]], "+", RowBox[List["39283744500", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["41902660800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["20951330400", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["5587021440", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["846518400", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["74419200", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3720960", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["97280", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "10"]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], RowBox[List["20638924800", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02