Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=-11/2, a2>=-11/2 > For fixed z and a1=-11/2, a2=2, b1>=-11/2 > For fixed z and a1=-11/2, a2=2, b1=7/2





http://functions.wolfram.com/07.25.03.1400.01









  


  










Input Form





HypergeometricPFQ[{-(11/2), 2}, {7/2, 6}, -z] == (20 (24 - 126 z + 798 z^2 + 2261 z^3))/(29393 z^5) + (1/(1896201216 z^5)) ((-30965760 + 131604480 z - 882524160 z^2 - 1120857885 z^3 + 522140850 z^4 + 773002692 z^5 + 265816824 z^6 + 41019792 z^7 + 3159648 z^8 + 117440 z^9 + 1664 z^10)/E^z) + (1/(3792402432 z^(5/2))) (Sqrt[Pi] (-2749862115 - 2095133040 z + 1629547920 z^2 + 1777688640 z^3 + 569772000 z^4 + 85085952 z^5 + 6435072 z^6 + 236544 z^7 + 3328 z^8) Erf[Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", "6"]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["20", " ", RowBox[List["(", RowBox[List["24", "-", RowBox[List["126", " ", "z"]], "+", RowBox[List["798", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2261", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["29393", " ", SuperscriptBox["z", "5"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["1896201216", " ", SuperscriptBox["z", "5"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30965760"]], "+", RowBox[List["131604480", " ", "z"]], "-", RowBox[List["882524160", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1120857885", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["522140850", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["773002692", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["265816824", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["41019792", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3159648", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["117440", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1664", " ", SuperscriptBox["z", "10"]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["3792402432", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]], RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2749862115"]], "-", RowBox[List["2095133040", " ", "z"]], "+", RowBox[List["1629547920", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1777688640", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["569772000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["85085952", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["6435072", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["236544", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3328", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;11&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;2&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;7&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2261 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 798 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 126 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 24 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 29393 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 1896201216 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1664 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 117440 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3159648 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 41019792 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 265816824 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 773002692 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 522140850 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1120857885 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 882524160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 131604480 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 30965760 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 3792402432 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3328 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 236544 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6435072 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 85085952 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 569772000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1777688640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1629547920 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2095133040 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 2749862115 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <cn type='integer'> 2 </cn> </list> <list> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='integer'> 6 </cn> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2261 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 798 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 126 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 24 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 29393 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 1896201216 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1664 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 117440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3159648 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 41019792 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 265816824 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 773002692 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 522140850 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1120857885 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 882524160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 131604480 </cn> <ci> z </ci> </apply> <cn type='integer'> -30965760 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 3792402432 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3328 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 236544 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6435072 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 85085952 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 569772000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1777688640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1629547920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2095133040 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -2749862115 </cn> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", "2"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", "6"]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["20", " ", RowBox[List["(", RowBox[List["24", "-", RowBox[List["126", " ", "z"]], "+", RowBox[List["798", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["2261", " ", SuperscriptBox["z", "3"]]]]], ")"]]]], RowBox[List["29393", " ", SuperscriptBox["z", "5"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "30965760"]], "+", RowBox[List["131604480", " ", "z"]], "-", RowBox[List["882524160", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["1120857885", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["522140850", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["773002692", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["265816824", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["41019792", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3159648", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["117440", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1664", " ", SuperscriptBox["z", "10"]]]]], ")"]]]], RowBox[List["1896201216", " ", SuperscriptBox["z", "5"]]]], "+", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2749862115"]], "-", RowBox[List["2095133040", " ", "z"]], "+", RowBox[List["1629547920", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1777688640", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["569772000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["85085952", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["6435072", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["236544", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["3328", " ", SuperscriptBox["z", "8"]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], RowBox[List["3792402432", " ", SuperscriptBox["z", RowBox[List["5", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02