|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.a7zm.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{-(5/2), 4}, {3/2, 6}, z] ==
-((40 (28 + 15 z))/(3003 z^5)) +
(E^z (3360 - 1560 z - 120 z^2 + 340 z^3 - 160 z^4 + 5481 z^5 - 2996 z^6 +
308 z^7))/(9009 z^5) + (Sqrt[Pi] (3575 - 13650 z + 6300 z^2 - 616 z^3)
Erfi[Sqrt[z]])/(18018 Sqrt[z])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "6"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["40", " ", RowBox[List["(", RowBox[List["28", "+", RowBox[List["15", " ", "z"]]]], ")"]]]], RowBox[List["3003", " ", SuperscriptBox["z", "5"]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["3360", "-", RowBox[List["1560", " ", "z"]], "-", RowBox[List["120", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["340", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["160", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5481", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2996", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["308", " ", SuperscriptBox["z", "7"]]]]], ")"]]]], RowBox[List["9009", " ", SuperscriptBox["z", "5"]]]], "+", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["3575", "-", RowBox[List["13650", " ", "z"]], "+", RowBox[List["6300", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["616", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], RowBox[List["18018", " ", SqrtBox["z"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 4 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 15 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 28 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 3003 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 308 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2996 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5481 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 340 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1560 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3360 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 9009 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 616 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6300 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13650 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 3575 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 18018 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <cn type='integer'> 4 </cn> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='integer'> 6 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 15 </cn> <ci> z </ci> </apply> <cn type='integer'> 28 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 3003 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 308 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2996 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5481 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 340 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1560 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3360 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 9009 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -616 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6300 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13650 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 3575 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 18018 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["5", "2"]]], ",", "4"]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", "6"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["40", " ", RowBox[List["(", RowBox[List["28", "+", RowBox[List["15", " ", "z"]]]], ")"]]]], RowBox[List["3003", " ", SuperscriptBox["z", "5"]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["3360", "-", RowBox[List["1560", " ", "z"]], "-", RowBox[List["120", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["340", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["160", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["5481", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["2996", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["308", " ", SuperscriptBox["z", "7"]]]]], ")"]]]], RowBox[List["9009", " ", SuperscriptBox["z", "5"]]]], "+", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List["3575", "-", RowBox[List["13650", " ", "z"]], "+", RowBox[List["6300", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["616", " ", SuperscriptBox["z", "3"]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], RowBox[List["18018", " ", SqrtBox["z"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|