|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.aflx.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{1, 11/2}, {-(11/2), -(9/2)}, -z] ==
(1/9282994875) (9282994875 - 2062887750 z + 851350500 z^2 - 729729000 z^3 +
1654052400 z^4 - 20951330400 z^5 - 879955876800 z^6 + 8260681968000 z^7 -
15327665337600 z^8 + 11315885898240 z^9 - 4189258275840 z^10 +
866372229120 z^11 - 105336852480 z^12 + 7628759040 z^13 -
320847872 z^14 + 7176192 z^15 - 65536 z^16) +
(1/9282994875) ((65536 Sqrt[Pi] (39916800 z^(13/2) - 199584000 z^(15/2) +
299376000 z^(17/2) - 199584000 z^(19/2) + 69854400 z^(21/2) -
13970880 z^(23/2) + 1663200 z^(25/2) - 118800 z^(27/2) +
4950 z^(29/2) - 110 z^(31/2) + z^(33/2)) Erfi[Sqrt[z]])/E^z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "9282994875"], RowBox[List["(", RowBox[List["9282994875", "-", RowBox[List["2062887750", " ", "z"]], "+", RowBox[List["851350500", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["729729000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1654052400", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["20951330400", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["879955876800", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8260681968000", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["15327665337600", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["11315885898240", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["4189258275840", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["866372229120", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["105336852480", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["7628759040", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["320847872", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["7176192", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["65536", " ", SuperscriptBox["z", "16"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "9282994875"], RowBox[List["(", RowBox[List["65536", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["39916800", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["199584000", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["299376000", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["199584000", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["69854400", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "-", RowBox[List["13970880", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["1663200", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "-", RowBox[List["118800", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["4950", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "-", RowBox[List["110", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 9282994875 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 65536 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7176192 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 320847872 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7628759040 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 105336852480 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 866372229120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4189258275840 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11315885898240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 15327665337600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8260681968000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 879955876800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 20951330400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1654052400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 729729000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 851350500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2062887750 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 9282994875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 9282994875 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 65536 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 33 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> - </mo> <mrow> <mn> 110 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 31 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4950 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 118800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1663200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 13970880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 69854400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 199584000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 299376000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 199584000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 39916800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 9282994875 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -65536 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7176192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 320847872 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7628759040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 105336852480 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 866372229120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4189258275840 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11315885898240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15327665337600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8260681968000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 879955876800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20951330400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1654052400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 729729000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 851350500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2062887750 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 9282994875 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 9282994875 </cn> <apply> <times /> <cn type='integer'> 65536 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='rational'> 33 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 110 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 31 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4950 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 118800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1663200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 13970880 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 69854400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 199584000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 299376000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 199584000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 39916800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["9282994875", "-", RowBox[List["2062887750", " ", "z"]], "+", RowBox[List["851350500", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["729729000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["1654052400", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["20951330400", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["879955876800", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["8260681968000", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["15327665337600", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["11315885898240", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["4189258275840", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["866372229120", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["105336852480", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["7628759040", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["320847872", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["7176192", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["65536", " ", SuperscriptBox["z", "16"]]]]], "9282994875"], "+", FractionBox[RowBox[List["65536", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["39916800", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["199584000", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["299376000", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["199584000", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["69854400", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "-", RowBox[List["13970880", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["1663200", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "-", RowBox[List["118800", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["4950", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "-", RowBox[List["110", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], "9282994875"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|