|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.ai4c.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{2, 9/2}, {-(9/2), 6}, z] ==
(572 (38760 + 1530 z - 30 z^2 + z^3))/(7 z^5) -
(1/(6615 z^5)) (8 E^z (2618916300 - 2515538025 z + 1204052850 z^2 -
382702320 z^3 + 90810720 z^4 - 17146080 z^5 + 2681280 z^6 - 357120 z^7 +
41472 z^8 - 4352 z^9 + 512 z^10))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["2", ",", FractionBox["9", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", "6"]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["572", " ", RowBox[List["(", RowBox[List["38760", "+", RowBox[List["1530", " ", "z"]], "-", RowBox[List["30", " ", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "3"]]], ")"]]]], RowBox[List["7", " ", SuperscriptBox["z", "5"]]]], "-", RowBox[List[FractionBox["1", RowBox[List["6615", " ", SuperscriptBox["z", "5"]]]], RowBox[List["(", RowBox[List["8", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["2618916300", "-", RowBox[List["2515538025", " ", "z"]], "+", RowBox[List["1204052850", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["382702320", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["90810720", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["17146080", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2681280", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["357120", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["41472", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4352", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "10"]]]]], ")"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["2", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["9", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mrow> <mn> 572 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> - </mo> <mrow> <mn> 30 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1530 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 38760 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 6615 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4352 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 41472 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 357120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2681280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 17146080 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 90810720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 382702320 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1204052850 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2515538025 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 2618916300 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 2 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <cn type='integer'> 6 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 572 </cn> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 30 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1530 </cn> <ci> z </ci> </apply> <cn type='integer'> 38760 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 6615 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4352 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 41472 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 357120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2681280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 17146080 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 90810720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 382702320 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1204052850 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2515538025 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2618916300 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["2", ",", FractionBox["9", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", "6"]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["572", " ", RowBox[List["(", RowBox[List["38760", "+", RowBox[List["1530", " ", "z"]], "-", RowBox[List["30", " ", SuperscriptBox["z", "2"]]], "+", SuperscriptBox["z", "3"]]], ")"]]]], RowBox[List["7", " ", SuperscriptBox["z", "5"]]]], "-", FractionBox[RowBox[List["8", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", RowBox[List["(", RowBox[List["2618916300", "-", RowBox[List["2515538025", " ", "z"]], "+", RowBox[List["1204052850", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["382702320", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["90810720", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["17146080", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["2681280", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["357120", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["41472", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4352", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["512", " ", SuperscriptBox["z", "10"]]]]], ")"]]]], RowBox[List["6615", " ", SuperscriptBox["z", "5"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|