Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=5/2, a2>=5/2 > For fixed z and a1=5/2, a2=6, b1>=-11/2 > For fixed z and a1=5/2, a2=6, b1=-7/2





http://functions.wolfram.com/07.25.03.ajsx.01









  


  










Input Form





HypergeometricPFQ[{5/2, 6}, {-(7/2), -(5/2)}, -z] == (1/70875) (70875 - 121500 z + 396900 z^2 - 6350400 z^3 - 314344800 z^4 + 3453278400 z^5 - 7310815200 z^6 + 6063353280 z^7 - 2493740880 z^8 + 568046040 z^9 - 75547980 z^10 + 5950560 z^11 - 270848 z^12 + 6528 z^13 - 64 z^14) + (1/70875) ((2 Sqrt[Pi] (498841200 z^(9/2) - 2834325000 z^(11/2) + 4779108000 z^(13/2) - 3549156300 z^(15/2) + 1373155650 z^(17/2) - 301577265 z^(19/2) + 39197850 z^(21/2) - 3041400 z^(23/2) + 137040 z^(25/2) - 3280 z^(27/2) + 32 z^(29/2)) Erfi[Sqrt[z]])/E^z)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "70875"], RowBox[List["(", RowBox[List["70875", "-", RowBox[List["121500", " ", "z"]], "+", RowBox[List["396900", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6350400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["314344800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3453278400", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["7310815200", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["6063353280", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["2493740880", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["568046040", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["75547980", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["5950560", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["270848", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["6528", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["64", " ", SuperscriptBox["z", "14"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "70875"], RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["498841200", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["2834325000", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["4779108000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["3549156300", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["1373155650", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["301577265", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["39197850", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "-", RowBox[List["3041400", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["137040", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "-", RowBox[List["3280", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;5&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;7&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;5&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;z&quot;]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 70875 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 64 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6528 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 270848 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5950560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 75547980 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 568046040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2493740880 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6063353280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 7310815200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3453278400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 314344800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6350400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 396900 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 121500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 70875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 70875 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 137040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3041400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 39197850 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 301577265 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1373155650 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3549156300 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4779108000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2834325000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 498841200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 9 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 5 <sep /> 2 </cn> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 70875 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -64 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6528 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 270848 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5950560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 75547980 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 568046040 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2493740880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 6063353280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 7310815200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3453278400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 314344800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6350400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 396900 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 121500 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 70875 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 70875 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3280 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 137040 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3041400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 39197850 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 301577265 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1373155650 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3549156300 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4779108000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2834325000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 498841200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["5", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["7", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["70875", "-", RowBox[List["121500", " ", "z"]], "+", RowBox[List["396900", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["6350400", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["314344800", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3453278400", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["7310815200", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["6063353280", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["2493740880", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["568046040", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["75547980", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["5950560", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["270848", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["6528", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["64", " ", SuperscriptBox["z", "14"]]]]], "70875"], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["498841200", " ", SuperscriptBox["z", RowBox[List["9", "/", "2"]]]]], "-", RowBox[List["2834325000", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["4779108000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["3549156300", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["1373155650", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["301577265", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["39197850", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "-", RowBox[List["3041400", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["137040", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "-", RowBox[List["3280", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], "70875"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02