
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.25.03.alok.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
HypergeometricPFQ[{7/2, 6}, {-(11/2), -(7/2)}, z] ==
(1/245581875) (245581875 + 267907500 z + 375070500 z^2 + 1047816000 z^3 +
12259447200 z^4 - 245188944000 z^5 + 5094481392000 z^6 +
39199792665600 z^7 + 73806116025600 z^8 + 60933353564160 z^9 +
26986621132800 z^10 + 7090909862400 z^11 + 1168423226880 z^12 +
124240616640 z^13 + 8593484736 z^14 + 381639680 z^15 + 10429440 z^16 +
158720 z^17 + 1024 z^18) + (1/245581875) (32 E^z Sqrt[Pi]
(424594094400 z^(13/2) + 1934261985600 z^(15/2) +
3004766377200 z^(17/2) + 2247376395600 z^(19/2) +
939707508600 z^(21/2) + 238193396280 z^(23/2) + 38333718045 z^(25/2) +
4011214515 z^(27/2) + 274352610 z^(29/2) + 12086760 z^(31/2) +
328384 z^(33/2) + 4976 z^(35/2) + 32 z^(37/2)) Erf[Sqrt[z]])
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "245581875"], RowBox[List["(", RowBox[List["245581875", "+", RowBox[List["267907500", " ", "z"]], "+", RowBox[List["375070500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1047816000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["12259447200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["245188944000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5094481392000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["39199792665600", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["73806116025600", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["60933353564160", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["26986621132800", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["7090909862400", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["1168423226880", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["124240616640", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["8593484736", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["381639680", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["10429440", " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["158720", " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "18"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "245581875"], RowBox[List["(", RowBox[List["32", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["424594094400", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["1934261985600", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["3004766377200", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["2247376395600", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["939707508600", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["238193396280", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["38333718045", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["4011214515", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["274352610", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["12086760", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["328384", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["4976", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 7 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["7", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["6", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["7", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 245581875 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1024 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 18 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 158720 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 17 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10429440 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 381639680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8593484736 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 124240616640 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1168423226880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7090909862400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26986621132800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60933353564160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 73806116025600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 39199792665600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5094481392000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 245188944000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12259447200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1047816000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 375070500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 267907500 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 245581875 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 245581875 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 37 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4976 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 35 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 328384 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 33 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12086760 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 31 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 274352610 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4011214515 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 38333718045 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 238193396280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 939707508600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2247376395600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3004766377200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1934261985600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 424594094400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 7 <sep /> 2 </cn> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 7 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 245581875 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 1024 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 18 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 158720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10429440 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 381639680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8593484736 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 124240616640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1168423226880 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7090909862400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 26986621132800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60933353564160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 73806116025600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 39199792665600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5094481392000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 245188944000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 12259447200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1047816000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 375070500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 267907500 </cn> <ci> z </ci> </apply> <cn type='integer'> 245581875 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 245581875 </cn> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 37 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4976 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 35 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 328384 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 33 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12086760 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 31 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 274352610 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4011214515 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 38333718045 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 238193396280 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 939707508600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2247376395600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3004766377200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1934261985600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 424594094400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["7", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["7", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["245581875", "+", RowBox[List["267907500", " ", "z"]], "+", RowBox[List["375070500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["1047816000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["12259447200", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["245188944000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["5094481392000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["39199792665600", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["73806116025600", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["60933353564160", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["26986621132800", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["7090909862400", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["1168423226880", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["124240616640", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["8593484736", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["381639680", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["10429440", " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["158720", " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["1024", " ", SuperscriptBox["z", "18"]]]]], "245581875"], "+", FractionBox[RowBox[List["32", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["424594094400", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["1934261985600", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["3004766377200", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["2247376395600", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["939707508600", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["238193396280", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["38333718045", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["4011214515", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["274352610", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["12086760", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["328384", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["4976", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], "245581875"]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|