|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.amap.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{4, 11/2}, {-(9/2), -(5/2)}, -z] ==
(1/40186125) (40186125 - 78586200 z + 243243000 z^2 - 2918916000 z^3 -
57891834000 z^4 - 1173274502400 z^5 + 8624169066240 z^6 -
15307163827200 z^7 + 11748599251200 z^8 - 4763554375680 z^9 +
1125301708800 z^10 - 162982944768 z^11 + 14784860160 z^12 -
836321280 z^13 + 28439552 z^14 - 528384 z^15 + 4096 z^16) -
(1/40186125) ((512 Sqrt[Pi] (-6014736000 z^(11/2) + 26218080000 z^(13/2) -
38463465600 z^(15/2) + 26793607680 z^(17/2) - 10273223520 z^(19/2) +
2344386240 z^(21/2) - 332012520 z^(23/2) + 29666880 z^(25/2) -
1660707 z^(27/2) + 56058 z^(29/2) - 1036 z^(31/2) + 8 z^(33/2))
Erfi[Sqrt[z]])/E^z)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["4", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "40186125"], RowBox[List["(", RowBox[List["40186125", "-", RowBox[List["78586200", " ", "z"]], "+", RowBox[List["243243000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2918916000", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["57891834000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1173274502400", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["8624169066240", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["15307163827200", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["11748599251200", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4763554375680", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1125301708800", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["162982944768", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["14784860160", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["836321280", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["28439552", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["528384", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "16"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "40186125"], RowBox[List["(", RowBox[List["512", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6014736000"]], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["26218080000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["38463465600", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["26793607680", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["10273223520", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["2344386240", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "-", RowBox[List["332012520", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["29666880", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "-", RowBox[List["1660707", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["56058", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "-", RowBox[List["1036", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["8", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["4", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["5", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 40186125 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4096 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 528384 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 28439552 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 836321280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 14784860160 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 162982944768 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1125301708800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4763554375680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 11748599251200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 15307163827200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8624169066240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1173274502400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 57891834000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2918916000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 243243000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 78586200 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 40186125 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 40186125 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 33 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1036 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 31 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 56058 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1660707 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 29666880 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 332012520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2344386240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10273223520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26793607680 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 38463465600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 26218080000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6014736000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 4 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 5 <sep /> 2 </cn> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 40186125 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4096 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 528384 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 28439552 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 836321280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 14784860160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 162982944768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1125301708800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4763554375680 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 11748599251200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 15307163827200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8624169066240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1173274502400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 57891834000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2918916000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 243243000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 78586200 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 40186125 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 40186125 </cn> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 33 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1036 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 31 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 56058 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1660707 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 29666880 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 332012520 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2344386240 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10273223520 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26793607680 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 38463465600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 26218080000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6014736000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["4", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["5", "2"]]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["40186125", "-", RowBox[List["78586200", " ", "z"]], "+", RowBox[List["243243000", " ", SuperscriptBox["z", "2"]]], "-", RowBox[List["2918916000", " ", SuperscriptBox["z", "3"]]], "-", RowBox[List["57891834000", " ", SuperscriptBox["z", "4"]]], "-", RowBox[List["1173274502400", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["8624169066240", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["15307163827200", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["11748599251200", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["4763554375680", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1125301708800", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["162982944768", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["14784860160", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["836321280", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["28439552", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["528384", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "16"]]]]], "40186125"], "-", FractionBox[RowBox[List["512", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6014736000"]], " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["26218080000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "-", RowBox[List["38463465600", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["26793607680", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "-", RowBox[List["10273223520", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["2344386240", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "-", RowBox[List["332012520", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["29666880", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "-", RowBox[List["1660707", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["56058", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "-", RowBox[List["1036", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["8", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erfi", "[", SqrtBox["z"], "]"]]]], "40186125"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|