Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2},z] > Specific values > For integer and half-integer parameters and fixed z > For fixed z and a1=9/2, a2>=9/2 > For fixed z and a1=9/2, a2=6, b1>=-11/2 > For fixed z and a1=9/2, a2=6, b1=-9/2





http://functions.wolfram.com/07.25.03.an1k.01









  


  










Input Form





HypergeometricPFQ[{9/2, 6}, {-(9/2), -(9/2)}, z] == (1/1406514375) (1406514375 + 1875352500 z + 2946982500 z^2 + 8172964800 z^3 + 61297236000 z^4 + 4168212048000 z^5 + 228948519945600 z^6 + 1256601606220800 z^7 + 2320292270096640 z^8 + 2028915045964800 z^9 + 986189391129600 z^10 + 291370967838720 z^11 + 55183460290560 z^12 + 6908988248064 z^13 + 579960017280 z^14 + 32601260160 z^15 + 1203795456 z^16 + 27859968 z^17 + 364544 z^18 + 2048 z^19) + (1/1406514375) (64 E^z Sqrt[Pi] (479975932800 z^(11/2) + 8011905955200 z^(13/2) + 30669231398400 z^(15/2) + 47666026195200 z^(17/2) + 37857182479200 z^(19/2) + 17356633227360 z^(21/2) + 4939151243040 z^(23/2) + 912245755680 z^(25/2) + 112250801565 z^(27/2) + 9307686465 z^(29/2) + 518588658 z^(31/2) + 19024152 z^(33/2) + 438144 z^(35/2) + 5712 z^(37/2) + 32 z^(39/2)) Erf[Sqrt[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "1406514375"], RowBox[List["(", RowBox[List["1406514375", "+", RowBox[List["1875352500", " ", "z"]], "+", RowBox[List["2946982500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["8172964800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["61297236000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4168212048000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["228948519945600", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1256601606220800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2320292270096640", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["2028915045964800", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["986189391129600", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["291370967838720", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["55183460290560", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["6908988248064", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["579960017280", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["32601260160", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["1203795456", " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["27859968", " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["364544", " ", SuperscriptBox["z", "18"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "19"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "1406514375"], RowBox[List["(", RowBox[List["64", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["479975932800", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["8011905955200", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["30669231398400", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["47666026195200", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["37857182479200", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["17356633227360", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["4939151243040", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["912245755680", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["112250801565", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["9307686465", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["518588658", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["19024152", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["438144", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["5712", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["39", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mn> 6 </mn> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;2&quot;], SubscriptBox[&quot;F&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;9&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;6&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, FractionBox[&quot;9&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 1406514375 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2048 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 19 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 364544 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 18 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27859968 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 17 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1203795456 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 32601260160 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 579960017280 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6908988248064 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 55183460290560 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 291370967838720 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 986189391129600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2028915045964800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2320292270096640 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1256601606220800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 228948519945600 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4168212048000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 61297236000 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8172964800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2946982500 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1875352500 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 1406514375 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 1406514375 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 64 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5712 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 37 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 438144 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 35 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19024152 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 33 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 518588658 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 31 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 9307686465 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 112250801565 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 912245755680 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4939151243040 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 17356633227360 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 37857182479200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 47666026195200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30669231398400 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8011905955200 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 479975932800 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 11 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> erf </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 9 <sep /> 2 </cn> <cn type='integer'> 6 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 1406514375 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 19 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 364544 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 18 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 27859968 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1203795456 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 32601260160 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 579960017280 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6908988248064 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 55183460290560 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 291370967838720 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 986189391129600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2028915045964800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2320292270096640 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1256601606220800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 228948519945600 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4168212048000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 61297236000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8172964800 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2946982500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1875352500 </cn> <ci> z </ci> </apply> <cn type='integer'> 1406514375 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 1406514375 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 39 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5712 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 37 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 438144 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 35 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19024152 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 33 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 518588658 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 31 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 9307686465 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 112250801565 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 912245755680 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4939151243040 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 17356633227360 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 37857182479200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 47666026195200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30669231398400 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8011905955200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 479975932800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["9", "2"], ",", "6"]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["1406514375", "+", RowBox[List["1875352500", " ", "z"]], "+", RowBox[List["2946982500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["8172964800", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["61297236000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["4168212048000", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["228948519945600", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["1256601606220800", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["2320292270096640", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["2028915045964800", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["986189391129600", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["291370967838720", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["55183460290560", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["6908988248064", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["579960017280", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["32601260160", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["1203795456", " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["27859968", " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["364544", " ", SuperscriptBox["z", "18"]]], "+", RowBox[List["2048", " ", SuperscriptBox["z", "19"]]]]], "1406514375"], "+", FractionBox[RowBox[List["64", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["479975932800", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["8011905955200", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["30669231398400", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["47666026195200", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["37857182479200", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["17356633227360", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["4939151243040", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["912245755680", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["112250801565", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["9307686465", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["518588658", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["19024152", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["438144", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["5712", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]], "+", RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["39", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], "1406514375"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02