|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.anbq.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{5, 11/2}, {-(11/2), -(9/2)}, z] ==
(1/27848984625) (27848984625 + 30943316250 z + 38310772500 z^2 +
76621545000 z^3 + 347351004000 z^4 + 7919602891200 z^5 -
554372202384000 z^6 - 9198923358240000 z^7 - 29913896965075200 z^8 -
39270950726515200 z^9 - 26637923169285120 z^10 - 10571975927654400 z^11 -
2637957688934400 z^12 - 432182155345920 z^13 - 47653440307200 z^14 -
3572331227136 z^15 - 181346088960 z^16 - 6102666240 z^17 -
129705984 z^18 - 1568768 z^19 - 8192 z^20) -
(1/27848984625) (512 E^z Sqrt[Pi] (4061334816000 z^(13/2) +
33302945491200 z^(15/2) + 83719241020800 z^(17/2) +
96329497017600 z^(19/2) + 60517451332800 z^(21/2) +
22893033240000 z^(23/2) + 5535094007520 z^(25/2) +
887546555280 z^(27/2) + 96398427510 z^(29/2) + 7148648430 z^(31/2) +
360028305 z^(33/2) + 12044424 z^(35/2) + 254856 z^(37/2) +
3072 z^(39/2) + 16 z^(41/2)) Erf[Sqrt[z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["5", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "27848984625"], RowBox[List["(", RowBox[List["27848984625", "+", RowBox[List["30943316250", " ", "z"]], "+", RowBox[List["38310772500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["76621545000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["347351004000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7919602891200", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["554372202384000", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["9198923358240000", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["29913896965075200", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["39270950726515200", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["26637923169285120", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["10571975927654400", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["2637957688934400", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["432182155345920", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["47653440307200", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["3572331227136", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["181346088960", " ", SuperscriptBox["z", "16"]]], "-", RowBox[List["6102666240", " ", SuperscriptBox["z", "17"]]], "-", RowBox[List["129705984", " ", SuperscriptBox["z", "18"]]], "-", RowBox[List["1568768", " ", SuperscriptBox["z", "19"]]], "-", RowBox[List["8192", " ", SuperscriptBox["z", "20"]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "27848984625"], RowBox[List["(", RowBox[List["512", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["4061334816000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["33302945491200", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["83719241020800", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["96329497017600", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["60517451332800", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["22893033240000", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["5535094007520", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["887546555280", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["96398427510", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["7148648430", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["360028305", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["12044424", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["254856", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]], "+", RowBox[List["3072", " ", SuperscriptBox["z", RowBox[List["39", "/", "2"]]]]], "+", RowBox[List["16", " ", SuperscriptBox["z", RowBox[List["41", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 27848984625 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8192 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 20 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1568768 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 19 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 129705984 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 18 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6102666240 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 17 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 181346088960 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3572331227136 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 47653440307200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 432182155345920 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2637957688934400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 10571975927654400 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 26637923169285120 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 39270950726515200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 29913896965075200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 9198923358240000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 554372202384000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7919602891200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 347351004000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 76621545000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 38310772500 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 30943316250 </mn> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mn> 27848984625 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 27848984625 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 512 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 41 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3072 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 39 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 254856 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 37 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12044424 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 35 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 360028305 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 33 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 7148648430 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 31 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 96398427510 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 29 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 887546555280 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 27 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5535094007520 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 25 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 22893033240000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 23 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 60517451332800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 21 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 96329497017600 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 19 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 83719241020800 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 17 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 33302945491200 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 15 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4061334816000 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 13 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 5 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 27848984625 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -8192 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 20 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1568768 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 19 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 129705984 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 18 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6102666240 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 181346088960 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3572331227136 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 47653440307200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 432182155345920 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2637957688934400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 10571975927654400 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 26637923169285120 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 39270950726515200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 29913896965075200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 9198923358240000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 554372202384000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 7919602891200 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 347351004000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 76621545000 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 38310772500 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 30943316250 </cn> <ci> z </ci> </apply> <cn type='integer'> 27848984625 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 27848984625 </cn> <apply> <times /> <cn type='integer'> 512 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 41 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3072 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 39 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 254856 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 37 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12044424 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 35 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 360028305 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 33 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 7148648430 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 31 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96398427510 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 29 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 887546555280 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 27 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 5535094007520 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 25 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 22893033240000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 23 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 60517451332800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 21 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96329497017600 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 19 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 83719241020800 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 17 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 33302945491200 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 15 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4061334816000 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 13 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["5", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["27848984625", "+", RowBox[List["30943316250", " ", "z"]], "+", RowBox[List["38310772500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["76621545000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["347351004000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7919602891200", " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["554372202384000", " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["9198923358240000", " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["29913896965075200", " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["39270950726515200", " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["26637923169285120", " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["10571975927654400", " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["2637957688934400", " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["432182155345920", " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["47653440307200", " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["3572331227136", " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["181346088960", " ", SuperscriptBox["z", "16"]]], "-", RowBox[List["6102666240", " ", SuperscriptBox["z", "17"]]], "-", RowBox[List["129705984", " ", SuperscriptBox["z", "18"]]], "-", RowBox[List["1568768", " ", SuperscriptBox["z", "19"]]], "-", RowBox[List["8192", " ", SuperscriptBox["z", "20"]]]]], "27848984625"], "-", FractionBox[RowBox[List["512", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["4061334816000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["33302945491200", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["83719241020800", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["96329497017600", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["60517451332800", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["22893033240000", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["5535094007520", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["887546555280", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["96398427510", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["7148648430", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["360028305", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["12044424", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["254856", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]], "+", RowBox[List["3072", " ", SuperscriptBox["z", RowBox[List["39", "/", "2"]]]]], "+", RowBox[List["16", " ", SuperscriptBox["z", RowBox[List["41", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], "27848984625"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|