| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.25.03.anci.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{5, 11/2}, {-(9/2), -(9/2)}, z] == 
 (1/2531725875) (2531725875 + 3438146250 z + 5472967500 z^2 + 
    15324309000 z^3 + 115783668000 z^4 + 7919602891200 z^5 + 
    437349498768000 z^6 + 2412180878688000 z^7 + 4473906656083200 z^8 + 
    3928236402931200 z^9 + 1916785725281280 z^10 + 568396294502400 z^11 + 
    108027305164800 z^12 + 13570568355840 z^13 + 1142847912960 z^14 + 
    64444514304 z^15 + 2386849280 z^16 + 55403520 z^17 + 727040 z^18 + 
    4096 z^19) + (1/2531725875) (256 E^z Sqrt[Pi] (228559968000 z^(11/2) + 
     3832774848000 z^(13/2) + 14735085321600 z^(15/2) + 
     22994718566400 z^(17/2) + 18333694612800 z^(19/2) + 
     8436751344000 z^(21/2) + 2409380316000 z^(23/2) + 
     446530527360 z^(25/2) + 55127003490 z^(27/2) + 4585713780 z^(29/2) + 
     256293465 z^(31/2) + 9430440 z^(33/2) + 217832 z^(35/2) + 
     2848 z^(37/2) + 16 z^(39/2)) Erf[Sqrt[z]]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["5", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2531725875"], RowBox[List["(", RowBox[List["2531725875", "+", RowBox[List["3438146250", " ", "z"]], "+", RowBox[List["5472967500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15324309000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["115783668000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7919602891200", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["437349498768000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2412180878688000", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4473906656083200", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["3928236402931200", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1916785725281280", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["568396294502400", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["108027305164800", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["13570568355840", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["1142847912960", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["64444514304", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["2386849280", " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["55403520", " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["727040", " ", SuperscriptBox["z", "18"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "19"]]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "2531725875"], RowBox[List["(", RowBox[List["256", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["228559968000", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3832774848000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["14735085321600", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["22994718566400", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["18333694612800", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["8436751344000", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["2409380316000", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["446530527360", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["55127003490", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["4585713780", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["256293465", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["9430440", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["217832", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["2848", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]], "+", RowBox[List["16", " ", SuperscriptBox["z", RowBox[List["39", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], ")"]]]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 5 </mn>  <mo> , </mo>  <mfrac>  <mn> 11 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 9 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 9 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["5", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo>  </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2531725875 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 4096 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 19 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 727040 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 18 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 55403520 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 17 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2386849280 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 16 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 64444514304 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 15 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1142847912960 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 14 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 13570568355840 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 13 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 108027305164800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 12 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 568396294502400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 11 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 1916785725281280 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 10 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3928236402931200 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 9 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4473906656083200 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 8 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2412180878688000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 7 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 437349498768000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 6 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 7919602891200 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 5 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 115783668000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 4 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 15324309000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 3 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 5472967500 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3438146250 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> + </mo>  <mn> 2531725875 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2531725875 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 256 </mn>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mi> z </mi>  </msup>  <mo> ⁢ </mo>  <msqrt>  <mi> π </mi>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 16 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 39 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2848 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 37 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 217832 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 35 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 9430440 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 33 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 256293465 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 31 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4585713780 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 29 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 55127003490 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 27 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 446530527360 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 25 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2409380316000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 23 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 8436751344000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 21 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 18333694612800 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 19 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 22994718566400 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 17 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 14735085321600 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 15 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3832774848000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 13 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 228559968000 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 11 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> erf </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msqrt>  <mi> z </mi>  </msqrt>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <cn type='integer'> 5 </cn>  <cn type='rational'> 11 <sep /> 2 </cn>  </list>  <list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 9 <sep /> 2 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='rational'> 1 <sep /> 2531725875 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4096 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 19 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 727040 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 18 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 55403520 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 17 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2386849280 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 16 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 64444514304 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 15 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1142847912960 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 14 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 13570568355840 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 13 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 108027305164800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 12 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 568396294502400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 11 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 1916785725281280 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 10 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3928236402931200 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 9 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4473906656083200 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 8 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2412180878688000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 7 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 437349498768000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 6 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 7919602891200 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 5 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 115783668000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 15324309000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 5472967500 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3438146250 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> 2531725875 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2531725875 </cn>  <apply>  <times />  <cn type='integer'> 256 </cn>  <apply>  <power />  <exponentiale />  <ci> z </ci>  </apply>  <apply>  <power />  <pi />  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 16 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 39 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2848 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 37 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 217832 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 35 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 9430440 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 33 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 256293465 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 31 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 4585713780 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 29 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 55127003490 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 27 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 446530527360 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 25 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 2409380316000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 23 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 8436751344000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 21 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 18333694612800 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 19 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 22994718566400 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 17 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 14735085321600 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 15 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3832774848000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 13 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 228559968000 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 11 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Erf </ci>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["5", ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["9", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2531725875", "+", RowBox[List["3438146250", " ", "z"]], "+", RowBox[List["5472967500", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["15324309000", " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["115783668000", " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["7919602891200", " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["437349498768000", " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["2412180878688000", " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["4473906656083200", " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["3928236402931200", " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["1916785725281280", " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["568396294502400", " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["108027305164800", " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["13570568355840", " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["1142847912960", " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["64444514304", " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["2386849280", " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["55403520", " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["727040", " ", SuperscriptBox["z", "18"]]], "+", RowBox[List["4096", " ", SuperscriptBox["z", "19"]]]]], "2531725875"], "+", FractionBox[RowBox[List["256", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["228559968000", " ", SuperscriptBox["z", RowBox[List["11", "/", "2"]]]]], "+", RowBox[List["3832774848000", " ", SuperscriptBox["z", RowBox[List["13", "/", "2"]]]]], "+", RowBox[List["14735085321600", " ", SuperscriptBox["z", RowBox[List["15", "/", "2"]]]]], "+", RowBox[List["22994718566400", " ", SuperscriptBox["z", RowBox[List["17", "/", "2"]]]]], "+", RowBox[List["18333694612800", " ", SuperscriptBox["z", RowBox[List["19", "/", "2"]]]]], "+", RowBox[List["8436751344000", " ", SuperscriptBox["z", RowBox[List["21", "/", "2"]]]]], "+", RowBox[List["2409380316000", " ", SuperscriptBox["z", RowBox[List["23", "/", "2"]]]]], "+", RowBox[List["446530527360", " ", SuperscriptBox["z", RowBox[List["25", "/", "2"]]]]], "+", RowBox[List["55127003490", " ", SuperscriptBox["z", RowBox[List["27", "/", "2"]]]]], "+", RowBox[List["4585713780", " ", SuperscriptBox["z", RowBox[List["29", "/", "2"]]]]], "+", RowBox[List["256293465", " ", SuperscriptBox["z", RowBox[List["31", "/", "2"]]]]], "+", RowBox[List["9430440", " ", SuperscriptBox["z", RowBox[List["33", "/", "2"]]]]], "+", RowBox[List["217832", " ", SuperscriptBox["z", RowBox[List["35", "/", "2"]]]]], "+", RowBox[List["2848", " ", SuperscriptBox["z", RowBox[List["37", "/", "2"]]]]], "+", RowBox[List["16", " ", SuperscriptBox["z", RowBox[List["39", "/", "2"]]]]]]], ")"]], " ", RowBox[List["Erf", "[", SqrtBox["z"], "]"]]]], "2531725875"]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |