|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.ann6.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{11/2, 11/2}, {-(11/2), -(11/2)}, z] ==
(1/96496731725625) (96496731725625 E^z + 52417977727500 E^z z^2 +
85580371800000 E^z z^3 + 329484431430000 E^z z^4 +
3190436260704000 E^z z^5 + 259188714033480000 E^z z^6 +
19581227239343616000 E^z z^7 + 152528824051813440000 E^z z^8 +
395695450169800704000 E^z z^9 + 482575904989197465600 E^z z^10 +
326395813920067584000 E^z z^11 + 134642309359006310400 E^z z^12 +
35953447567048704000 E^z z^13 + 6457881448334131200 E^z z^14 +
799117019389624320 E^z z^15 + 68982044840755200 E^z z^16 +
4162328702484480 E^z z^17 + 173867787878400 E^z z^18 +
4901862113280 E^z z^19 + 88595234816 E^z z^20 + 922746880 E^z z^21 +
4194304 E^z z^22)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["11", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "96496731725625"], RowBox[List["(", RowBox[List[RowBox[List["96496731725625", " ", SuperscriptBox["\[ExponentialE]", "z"]]], "+", RowBox[List["52417977727500", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["85580371800000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["329484431430000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3190436260704000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["259188714033480000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["19581227239343616000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["152528824051813440000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["395695450169800704000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["482575904989197465600", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["326395813920067584000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["134642309359006310400", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["35953447567048704000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["6457881448334131200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["799117019389624320", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["68982044840755200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["4162328702484480", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["173867787878400", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "18"]]], "+", RowBox[List["4901862113280", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "19"]]], "+", RowBox[List["88595234816", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "20"]]], "+", RowBox[List["922746880", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "21"]]], "+", RowBox[List["4194304", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "22"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 96496731725625 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4194304 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 22 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 922746880 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 21 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 88595234816 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 20 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4901862113280 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 19 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 173867787878400 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 18 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4162328702484480 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 17 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 68982044840755200 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 799117019389624320 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6457881448334131200 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 35953447567048704000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 134642309359006310400 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 326395813920067584000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 482575904989197465600 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 395695450169800704000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 152528824051813440000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 19581227239343616000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 259188714033480000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3190436260704000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 329484431430000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 85580371800000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 52417977727500 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 96496731725625 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 96496731725625 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4194304 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 22 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 922746880 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 21 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 88595234816 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 20 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4901862113280 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 19 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 173867787878400 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 18 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4162328702484480 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 68982044840755200 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 799117019389624320 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6457881448334131200 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 35953447567048704000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 134642309359006310400 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 326395813920067584000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 482575904989197465600 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 395695450169800704000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 152528824051813440000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 19581227239343616000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 259188714033480000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3190436260704000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 329484431430000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 85580371800000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 52417977727500 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 96496731725625 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["11", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["96496731725625", " ", SuperscriptBox["\[ExponentialE]", "z"]]], "+", RowBox[List["52417977727500", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["85580371800000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["329484431430000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3190436260704000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "5"]]], "+", RowBox[List["259188714033480000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "6"]]], "+", RowBox[List["19581227239343616000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "7"]]], "+", RowBox[List["152528824051813440000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "8"]]], "+", RowBox[List["395695450169800704000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "9"]]], "+", RowBox[List["482575904989197465600", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "10"]]], "+", RowBox[List["326395813920067584000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "11"]]], "+", RowBox[List["134642309359006310400", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "12"]]], "+", RowBox[List["35953447567048704000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "13"]]], "+", RowBox[List["6457881448334131200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "14"]]], "+", RowBox[List["799117019389624320", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "15"]]], "+", RowBox[List["68982044840755200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "16"]]], "+", RowBox[List["4162328702484480", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "17"]]], "+", RowBox[List["173867787878400", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "18"]]], "+", RowBox[List["4901862113280", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "19"]]], "+", RowBox[List["88595234816", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "20"]]], "+", RowBox[List["922746880", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "21"]]], "+", RowBox[List["4194304", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "22"]]]]], "96496731725625"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|