|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.25.03.ann7.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{11/2, 11/2}, {-(11/2), -(9/2)}, z] ==
(1/8772430156875) (8772430156875 E^z + 1949428923750 E^z z +
8045262225000 E^z z^2 + 20334179250000 E^z z^3 + 123384263310000 E^z z^4 +
3437204787324000 E^z z^5 - 266063123608128000 E^z z^6 -
6349700330709120000 E^z z^7 - 27965884678079040000 E^z z^8 -
48537668687663232000 E^z z^9 - 42833396401541222400 E^z z^10 -
21884456465180467200 E^z z^11 - 6990261263741952000 E^z z^12 -
1464861669304320000 E^z z^13 - 207538712336793600 E^z z^14 -
20212610248212480 E^z z^15 - 1359848778301440 E^z z^16 -
62723093299200 E^z z^17 - 1936864051200 E^z z^18 - 38079037440 E^z z^19 -
428867584 E^z z^20 - 2097152 E^z z^21)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "8772430156875"], RowBox[List["(", RowBox[List[RowBox[List["8772430156875", " ", SuperscriptBox["\[ExponentialE]", "z"]]], "+", RowBox[List["1949428923750", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z"]], "+", RowBox[List["8045262225000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["20334179250000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["123384263310000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3437204787324000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["266063123608128000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["6349700330709120000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["27965884678079040000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["48537668687663232000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["42833396401541222400", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["21884456465180467200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["6990261263741952000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["1464861669304320000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["207538712336793600", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["20212610248212480", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["1359848778301440", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "16"]]], "-", RowBox[List["62723093299200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "17"]]], "-", RowBox[List["1936864051200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "18"]]], "-", RowBox[List["38079037440", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "19"]]], "-", RowBox[List["428867584", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "20"]]], "-", RowBox[List["2097152", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "21"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 11 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mn> 9 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "2"], SubscriptBox["F", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["11", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["11", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", FractionBox["9", "2"]]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8772430156875 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2097152 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 21 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 428867584 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 20 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 38079037440 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 19 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1936864051200 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 18 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 62723093299200 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 17 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1359848778301440 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 16 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 20212610248212480 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 15 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 207538712336793600 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 14 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 1464861669304320000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 13 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6990261263741952000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 12 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 21884456465180467200 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 11 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 42833396401541222400 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 10 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 48537668687663232000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 9 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 27965884678079040000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 8 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6349700330709120000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 7 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 266063123608128000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 6 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3437204787324000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 123384263310000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20334179250000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 8045262225000 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 1949428923750 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 8772430156875 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> z </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 11 <sep /> 2 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </list> <list> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 11 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 9 <sep /> 2 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8772430156875 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2097152 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 21 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 428867584 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 20 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 38079037440 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 19 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1936864051200 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 18 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 62723093299200 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 17 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1359848778301440 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 16 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20212610248212480 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 15 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 207538712336793600 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 14 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1464861669304320000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 13 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6990261263741952000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 12 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21884456465180467200 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 42833396401541222400 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 10 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 48537668687663232000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 9 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 27965884678079040000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 8 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6349700330709120000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 7 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 266063123608128000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 6 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3437204787324000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 123384263310000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20334179250000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8045262225000 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 1949428923750 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 8772430156875 </cn> <apply> <power /> <exponentiale /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox["11", "2"], ",", FractionBox["11", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["-", FractionBox["11", "2"]]], ",", RowBox[List["-", FractionBox["9", "2"]]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["8772430156875", " ", SuperscriptBox["\[ExponentialE]", "z"]]], "+", RowBox[List["1949428923750", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", "z"]], "+", RowBox[List["8045262225000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["20334179250000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "3"]]], "+", RowBox[List["123384263310000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "4"]]], "+", RowBox[List["3437204787324000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "5"]]], "-", RowBox[List["266063123608128000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "6"]]], "-", RowBox[List["6349700330709120000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "7"]]], "-", RowBox[List["27965884678079040000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "8"]]], "-", RowBox[List["48537668687663232000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "9"]]], "-", RowBox[List["42833396401541222400", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "10"]]], "-", RowBox[List["21884456465180467200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "11"]]], "-", RowBox[List["6990261263741952000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "12"]]], "-", RowBox[List["1464861669304320000", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "13"]]], "-", RowBox[List["207538712336793600", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "14"]]], "-", RowBox[List["20212610248212480", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "15"]]], "-", RowBox[List["1359848778301440", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "16"]]], "-", RowBox[List["62723093299200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "17"]]], "-", RowBox[List["1936864051200", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "18"]]], "-", RowBox[List["38079037440", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "19"]]], "-", RowBox[List["428867584", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "20"]]], "-", RowBox[List["2097152", " ", SuperscriptBox["\[ExponentialE]", "z"], " ", SuperscriptBox["z", "21"]]]]], "8772430156875"]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|